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Overview

We combine ideas from Identification for Control and Experiment Design
tools aiming to maximize the life-time performance of a closed-loop
system.

“A model-based controller is progressively improved using system
identification. Excitation is given to the system when it is convenient.”
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Identification for Control

System running in closed loop, but the control performance is not optimal.

“Improve the control performance while limiting the excitation cost.”

An identification experiment followed by the “normal operation”

Control performance V depends on the parameter covariance P .

The parameter covariance P depends on the excitation signal r.

Excitation cost E depends on excitation signal r.

A trade-off between the excitation cost E and the control performance V.
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Experiment Design
For LTI systems

The covariance P is a nonlinear, nonconvex function of the excitation
signal (time domain).
The information matrix F = P−1 is a linear function of the excitation
power spectrum Φ(ω) (frequency domain).

Input design in the frequency domain using a two-step procedure:
1 Determine an optimal spectrum Φ(ω) (convex optimization).
2 Find a signal r(t) with spectrum Φ(ω) (stochastic realization).
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Itendification for Control
Classical: “Given a maximum allowed perturbation, find the excitation
signal that gives the best control performance.”

maxV(P ) such that E ≤ Ē .

M. Gevers and L.Ljung.
Optimal experiment designs with respect to the intended model application.
Automatica, 22(5):543-554, 1986

Least costly: “Given a minimum allowed performance level, find the
excitation signal that minimizes the perturbation.”

min E such that V(P ) ≥ V̄.
X.Bombois, G.Scorletti, M.Gevers, P.M.J. Van den Hof and R.Hildebrand.
Least costly identification experiment for control.
Automatica, 42(10):1651-1662, 2006

Limitations:

Two distinct phases: identification and normal operation.

V and E considered separately.

“Can we design experiments in such a way that the overall performance is
optimized during the whole time of operation?”
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The Framework

Linear system operated in closed-loop over n consecutive learning intervals.

After an interval, model update
and controller re-design.

Excitation signal rk in each
interval.
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Excitation rk has a dual effect. Worsens performance during the interval
k, but can improve performance for interval k + 1.

“Design the signals rk to optimize the performance over n intervals.”
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For each learning interval:

Identification

Controller design

Experiment design

Execute interval k

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1

Analogy with actively adaptive learning control algorithm.
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Iterative Identification
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Iterative Identification

After the interval k is executed

Data (Yk, Uk) are collected.

Previous estimate θ̂k ∼ N (θo, Pk) is available.

The updated parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

∥∥∥Yk − Ŷ (Uk, θ)
∥∥∥2

2
+
∥∥∥θ − θ̂k∥∥∥2

P−1
k

.

θo − θ̂k+1 ∼ N (0, P−1
k+1) with P−1

k+1 = Fk(Φk) + P−1
k .

Information matrix Fk(Φk) linear in the spectrum Φk (learning
interval sufficiently large).

Since Fk(Φk) ≥ 0, parameter uncertainty decreases at each step.
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∥∥∥Yk − Ŷ (Uk, θ)
∥∥∥2

2
+
∥∥∥θ − θ̂k∥∥∥2

P−1
k

.

θo − θ̂k+1 ∼ N (0, P−1
k+1) with P−1

k+1 = Fk(Φk) + P−1
k .

Information matrix Fk(Φk) linear in the spectrum Φk (learning
interval sufficiently large).

Since Fk(Φk) ≥ 0, parameter uncertainty decreases at each step.

Marco Forgione (TUD) Iterative Model Improvement ERNSI 2013 8 / 24



Iterative Identification

After the interval k is executed

Data (Yk, Uk) are collected.

Previous estimate θ̂k ∼ N (θo, Pk) is available.

The updated parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

∥∥∥Yk − Ŷ (Uk, θ)
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Iterative Identification
We can define an uncertainty region

Dk(α, P−1
k ) = {θ ∈ Rp | (θ − θ̂k)>P−1

k (θ − θ̂k) ≤ χ2
p(α)}

where θo lies with probability α.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

 

 

θ̂k
θo

Dk+1 is always smaller than Dk.
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Controller Design
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Controller Design

The controller is here designed based on a nominal criterion

Ck = C(θ̂k)

H2, H∞, PID tuning rule,...

Robust stability

The controller will be applied on the true system So.
1 Stability of the uncertain controller system can be verified (in the

uncertainty set Dk) using established tools.
I X. Bombois and M. Gevers and L.Ljung.

Robustness analysis tools for an uncertainty set obtained by prediction error identification.
Automatica, 37(10):1651-1636, 2001

2 If robust stability is verified for the interval k, it is very unlikely that it
will be violated for k + 1 since Dk+1 is always smaller than Dk.

Marco Forgione (TUD) Iterative Model Improvement ERNSI 2013 10 / 24



Controller Design

The controller is here designed based on a nominal criterion

Ck = C(θ̂k)

H2, H∞, PID tuning rule,...

Robust stability

The controller will be applied on the true system So.
1 Stability of the uncertain controller system can be verified (in the

uncertainty set Dk) using established tools.

X. Bombois, M. Gevers, G. Scorletti, B.D.O. Anderson
Robustness analysis tools for an uncertainty set obtained by prediction error identification.
Automatica, 37(10):1651-1636, 2001

2 If robust stability is verified for the interval k, it is very unlikely that it
will be violated for k + 1 since Dk+1 is always smaller than Dk.

Marco Forgione (TUD) Iterative Model Improvement ERNSI 2013 10 / 24



Controller Design

The controller is here designed based on a nominal criterion

Ck = C(θ̂k)

H2, H∞, PID tuning rule,...

Robust stability

The controller will be applied on the true system So.
1 Stability of the uncertain controller system can be verified (in the

uncertainty set Dk) using established tools.

X. Bombois, M. Gevers, G. Scorletti, B.D.O. Anderson
Robustness analysis tools for an uncertainty set obtained by prediction error identification.
Automatica, 37(10):1651-1636, 2001

2 If robust stability is verified for the interval k, it is very unlikely that it
will be violated for k + 1 since Dk+1 is always smaller than Dk.

Marco Forgione (TUD) Iterative Model Improvement ERNSI 2013 10 / 24



Experiment Design
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Experiment Design
Overview

Let us define:

Optimal Loop
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Experiment Design
Objective

Define the total cost for a batch as

Tk ,
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Excitation signals rk are designed in order to

minimize
∑n

k=1 Tk.

satisfy constraints Tk ≤ T̄k for each interval.
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Experiment Design
Total Cost, Modeling Error Cost & Excitation Cost

Total Cost: power of output difference between the two loops:

Tk , E[(yol,ek − yel,erk )2].
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Since rk and ek are independent:
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Since rk and ek are independent:

Total Cost Tk︷ ︸︸ ︷
E[(yol,ek − yel,erk )2] =

Modeling Error cost Vk︷ ︸︸ ︷
E[(yol,ek − yel,ek )2] +

Excitation Cost Ek︷ ︸︸ ︷
E[(yel,rk )2] .
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Experiment Design
Objective

Experiment Design Problem (for the learning interval 1):
minimize the summation of the total cost over the future n intervals

min

n∑
k=1

Tk subject to

Tk ≤ T̄k, k = 1, 2, . . . , n.

Optimization variables: spectra of all the excitation signals r1, . . . , rn.

Tk = Vk + Ek random variables ⇒ minimization in a worst-case sense.

Vwc
k and Ewc

k are computed by taking the maximum of their second
order approximation over the uncertainty set Dk. T wc

k = Vwc
k + Ewc

k .
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Experiment Design
Receding Horizon Implementation

We use the uncertainty set Dk to compute Vwc
k , Ewc

k .

The uncertainty set Dk depends on the covariance Pk, which is linear
in the spectrum.

However, the covariance Pk is also a function of θo (unknown!).
Typical chicken & the egg issue.

Typical solution: replace θo with θ̂1.

Dividing the time in learning intervals allows us to mitigate the effect of
this approximation.

The Experiment Design is implemented in Receding Horizon over the
learning intervals.
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Experiment Design
Receding Horizon Implementation

● θ1 available 
● design C1
● design Ф1,Ф2,..,Фn 
● apply C1, r1

interval 1 interval 2 interval k interval k+1... ... interval n

● Y1, U1 available
● identify θ2
● design C2
● design Ф2,Ф3,…,Фn
● apply C2, r2

● Yk-1, Uk-1 available
● identify θk
● design Ck
● design Фk,Фk+1,…,Фn
● apply Ck, rk

● Yk, Uk available
● identify θK+1
● design Ck+1
● design Фk+1,Фk+2,…,Фn
● apply Ck+1, rk+1

● Zn-1 available
● identify θn
● Cn designed
● apply Cn

1 ED(1) for interval 1 based on θ̂1. Spectra (Φ1, . . . ,Φn) found.
r1 applied in interval 1. Interval 1 executed, data (Y1, U1) collected.

2 Parameter θ̂2 identified from the data. ED(2) for interval 2 based on
θ̂2. New spectra (Φ2, . . . ,Φn) found. Signal r2 applied in interval 2.
Interval 2 executed, data (Y2, U2) collected.

3 . . .
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Experiment Design
Flow Diagram

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1
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Numerical Example

Second-order system So in a full BJ model structure.

N = 2400 total samples.

n = 12 batches of length 200.

Constraints:
I Tk ≤ 0.7 for k = 1, . . . , 6.
I Tk ≤ 0.005 for k = 7, . . . , 12.
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Numerical Simulation
Excitation Spectra

Excitation Spectra for k = 1
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Numerical Simulation
Total cost

Total cost
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Numerical Simulation
Total cost

n=12 learning intervals
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n=2 learning intervals
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Note: n = 2 learning intervals corresponds to a more classical two-phase
experiment design.
Intuitively, better performance with shorter intervals. However, asymptotic
assumptions in the interval length are used here. . .
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Conclusions

A framework for iterative model improvement for model-based control.

Aims to maximize the overall performance.

No distinction between identification and control batches.

Excitation is introduced only when it pays back.

The framework was thought for industrial batch processes (learning
interval = batch). However, batch processes are often severley nonlinear.

On-going work for nonlinear experiment design.
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Thank you.
Questions?
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Experiment Design
Worst-case modeling error cost

From Parseval relation Vk = E[(yol,ek − yel,ek )2] =

Vk(θo, θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ 1

1 + C(θ̂k)G(θo)
− 1

1 + C(θo)G(θo)

∣∣∣∣∣
2

|H|2 (θo)σ
2
e dω

We approximate Vk(θo, θ̂k) as a quadratic function of θo locally
around θ̂k

Vk(θk + δk, θ̂k) ≈
1

2
∆>k V

′′(θ̂k)δk.

Since ∆k = θo − θ̂k ∼ N (0, Pk), ∆k ∈ Dk(α, P−1
k ) w.p. α

Dk(α, P−1
k ) = {δ ∈ Rp | δ>P−1

k δ ≤ χ2
p(α)}
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Worst-case modeling error cost

The optimization problem becomes

Vwc = max
δ

1

2
δ>V ′′δ such that δ>P−1δ ≤ χ2

p(α)

Using the S-procedure, it is equivalent to. . .

Vwc = min
λ

1

λ
such that P−1 ≥

λV ′′χ2
p(α)

2

that is convex (in P−1).
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Experiment Design
Worst-case excitation cost

The excitation cost

Ek(θo, θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ G(θo)

1 + C(θ̂k)G(θo)

∣∣∣∣∣
2

Φr
k(ω) dω = Rk

>c(θ̂o, θk).

where Rk are the coefficients parametrizing Φr
k(ω)

E(θ̂k + δk, θk) ≈ R>k c(θ̂k, θ̂k) +R>k Jc(θ̂k)δk +
1

2
δ>k

(∑
Cj(θ̂k)Rk(j)

)
δk

Second order expansion in δk, linearly dependent in Rk.
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Experiment Design
Worst-case excitation cost

The optimization problem becomes

Ewc = max
δ

c0 +R>Jcδ +
1

2
δ>
(∑

CjR(j)
)
δ such that

δ>P−1δ ≤ χ2
p(α)

Using the S-procedure, it is equivalent to. . .

Bilinear if P−1 depends on variables. P−1
k kept constant to P−1

1 . . .
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γ such that

τ ≥ 0[
1
2

∑
j CjR(j)− τ P−1

χ2
1
2(R>Jc)

>

1
2R
>
k Jc R>co + τk − γk
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Worst-case excitation cost
Sample-based approach

A sample-based approach. . .
Using the distribution of ∆1 = θo − θ̂1 ∼ N (0, P1) :

1 Draw q samples δ̃s.

2 Compute Ek,s = Ek(θ̂k + δ̃s, θk) for s = 1, . . . , q.

3 Extract the empirical maximum Ewc
k = maxs Ek,s.

The number of samples q can be tuned such that Ewc
k is the Worst Case

Excitation Cost with probability α (randomized algorithms).

Sample extracted from ∆1. Similar approximation as taking P−1
k to P−1

1

for the second order approach.
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