BATCH-TO-BATCH STRATEGIES FOR COOLING CRYSTALLIZATION

Marco Forgione¹, Ali Mesbah¹, Xavier Bombois¹, Paul Van den Hof²

¹Delft University of Technology Delft Center for Systems and Control

²Eindhoven University of Technology Delft Center for Systems and Control

51th IEEE Conference on Decision and Control

Grand Wailea, Maui, Hawaii

Motivation

Many operations are performed in batch mode.

Batch processes bring both challenges and opportunities for control.

Challenges

- Wide dynamical range
- Limited measurements*

Opportunities

- Slow dynamics
- Repetitive nature^{*}

In this presentation: batch-to-batch learning control for cooling crytallization which exploit the repetitive nature.

- Iterative Learning Control (ILC)
- Iterative Identification Control (IIC).

3 > < 3
 3
 </p>

Motivation

Many operations are performed in batch mode.

Batch processes bring both challenges and opportunities for control.

Challenges

- Wide dynamical range
- Limited measurements*

Opportunities

- Slow dynamics
- Repetitive nature^{*}

In this presentation: batch-to-batch learning control for cooling crytallization which exploit the repetitive nature.

- Iterative Learning Control (ILC)
- Iterative Identification Control (IIC).

Outline

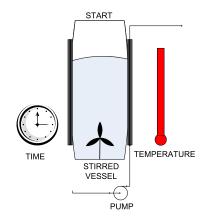
2 Batch-to-batch Strategies: ILC and IIC

③ Simulation Results

3 > < 3</p>

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid crystals are produced.



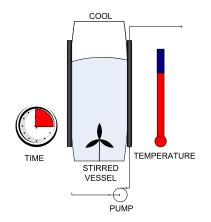
It to the vessel.

- Start cooling.
- Introduce "seeds".
- Cool to final temperature. Seeds grow, new crystal are generated.
- 8 Remove final product.

3 🕨 🖌 3

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid crystals are produced.

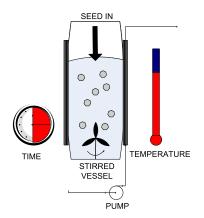


- Hot solution fed into the vessel.
- Start cooling.
 - Introduce "seeds".
- Cool to final temperature. Seeds grow, new crystal are generated.
- S Remove final product.

3 🕨 🖌 3

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid crystals are produced.



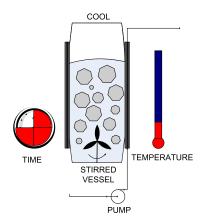
- Hot solution fed into the vessel.
- Start cooling.
- Introduce "seeds".
- Cool to final temperature. Seeds grow, new crystal are generated.

E 6 4 E

Semove final product.

Process Description

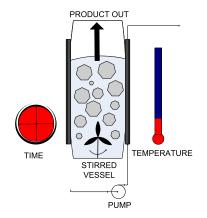
Separation and purification process of industrial interest. A solution is cooled down, solid crystals are produced.



- Hot solution fed into the vessel.
- Start cooling.
- Introduce "seeds".
- Cool to final temperature. Seeds grow, new crystal are generated.
- Semove final product.

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid crystals are produced.



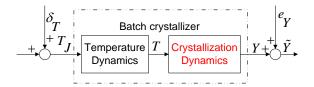
- Hot solution fed into the vessel.
- Start cooling.
- Introduce "seeds".
- Cool to final temperature. Seeds grow, new crystal are generated.
- Semove final product.

Modeling

Process described by:

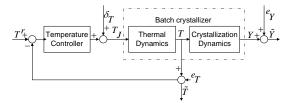
- Thermal Dynamics from the actuator to the vessel temperature. Linear, known or easy to derive/estimate.
- Crystallization Dynamics from the reactor temperature to the crystallization properties.

Nonlinear PDE, parametric + structural uncertainties possible.



Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line.

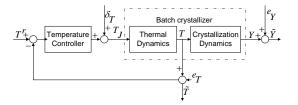


Control strategies such as MPC proposed in the literature. They rely on reliable on-line measurements, not always available.

Alternative approach based on Batch-to-batch Control.

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line.

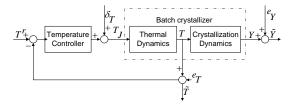


Control strategies such as MPC proposed in the literature. They rely on reliable on-line measurements, not always available.

Alternative approach based on Batch-to-batch Control.

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line.



Control strategies such as MPC proposed in the literature. They rely on reliable on-line measurements, not always available.

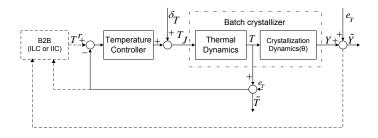
Alternative approach based on Batch-to-batch Control.

Batch-to-batch Control

Architecture

A framework for batch-to-batch control. \mathbf{T}_{k}^{r} updated from batch to batch.

- Built on top of the standard industrial T control.
- Can use measurements available at the end of the batch.



Objective for batch k: tracking of supersaturation profile Sk.

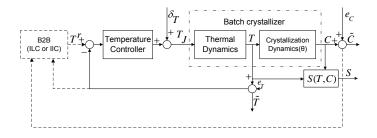
Marco Forgione (TU Delft)

Batch-to-batch Control

Architecture

A framework for batch-to-batch control. \mathbf{T}_{k}^{r} updated from batch to batch.

- Built on top of the standard industrial T control.
- Can use measurements available at the end of the batch.



• Objective for batch k: tracking of supersaturation profile $\overline{\mathbf{S}}_k$.

Batch-to-batch Strategies

Iterative Learning Control

ILC based on an additive correction of a nominal model from \mathbf{T}^r to \mathbf{S} .

$$\hat{S}(\mathbf{T}^r)$$
 nominal model
 $\hat{S}_k(\mathbf{T}^r) riangleq \hat{S}(\mathbf{T}^r) + lpha_k$ corrected model

Note: $\mathbf{T}^r, \boldsymbol{\alpha}_k$ vectors of samples $\in \mathbb{R}^N$ (N = batch length). We describe the system in discrete, finite time (static mapping).

A nonparametric model correction. α_k can compensate for

- model mismatch (along a particular trajectory)
- effect of repetitive disturbances

• • = • • = •

Batch-to-batch Strategies

Iterative Learning Control

ILC based on an additive correction of a nominal model from \mathbf{T}^r to \mathbf{S} .

$$\hat{S}(\mathbf{T}^r)$$
 nominal model
 $\hat{S}_k(\mathbf{T}^r) riangleq \hat{S}(\mathbf{T}^r) + lpha_k$ corrected model

Note: $\mathbf{T}^r, \boldsymbol{\alpha}_k$ vectors of samples $\in \mathbb{R}^N$ (N = batch length). We describe the system in discrete, finite time (static mapping).

A nonparametric model correction. α_k can compensate for

- model mismatch (along a particular trajectory)
- effect of repetitive disturbances

Correction vector

How to obtain the correction vector α ?

• In principle, "match" the measurement from the previous batch.

$$lpha_{k+1} = ilde{\mathsf{S}}_k - \hat{S}(\mathsf{T}_k^r) \qquad = \qquad \mathsf{model} \; \mathsf{error}_k$$

Due to nonrepetitive disturbances on $\tilde{\mathbf{S}}_k$, this is not a good solution. • Take into account the deviation from α_k .

$$\alpha_{k+1} = \arg\min_{\alpha \in \mathbb{R}^N} \|\tilde{\mathbf{S}}_k - (\hat{S}(\mathbf{T}^r) + \alpha)\|_{Q_\alpha}^2 + \|\alpha - \alpha_k\|_{S_\alpha}^2$$

Careful tuning of Q_{α} , S_{α} is delicate.

Correction vector

How to obtain the correction vector α ?

• In principle, "match" the measurement from the previous batch.

$$lpha_{k+1} = ilde{\mathsf{S}}_k - \hat{S}(\mathsf{T}_k^r) \qquad = \qquad \mathsf{model} \; \mathsf{error}_k$$

Due to nonrepetitive disturbances on $\tilde{\mathbf{S}}_k$, this is not a good solution.

• Take into account the deviation from α_k .

$$\alpha_{k+1} = \arg\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \|\mathbf{\tilde{S}}_k - (\hat{S}(\mathbf{T}^r) + \boldsymbol{\alpha})\|_{Q_{\alpha}}^2 + \|\boldsymbol{\alpha} - \boldsymbol{\alpha}_k\|_{S_{\alpha}}^2$$

Careful tuning of Q_{α} , S_{α} is delicate.

Correction vector

How to obtain the correction vector α ?

• In principle, "match" the measurement from the previous batch.

$$oldsymbol{lpha}_{k+1} = ilde{f S}_k - \hat{S}({f T}_k^r) \qquad = \qquad { ext{model error}}_k$$

Due to nonrepetitive disturbances on $\tilde{\mathbf{S}}_k$, this is not a good solution.

• Take into account the deviation from α_k .

$$\alpha_{k+1} = \arg\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \|\mathbf{\tilde{S}}_k - (\hat{S}(\mathbf{T}^r) + \boldsymbol{\alpha})\|_{Q_{\alpha}}^2 + \|\boldsymbol{\alpha} - \boldsymbol{\alpha}_k\|_{S_{\alpha}}^2$$

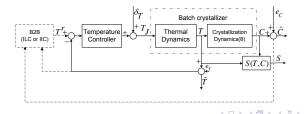
Careful tuning of Q_{α} , S_{α} is delicate.

Algorithm

Steps of the ILC algorithm. At each batch k:

- \mathbf{T}_{k}^{r} is set as the input to the T controller, the batch is executed. $\tilde{\mathbf{S}}_{k}$ is estimated from measurements.
- ② An additive correction of the nominal model is performed: $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k$.
- If the corrected model is used to design \mathbf{T}_{k+1}^r for the next batch:

$$\mathbf{T}_{k+1}^r = \arg\min_{\mathbf{T}^r \in \mathbb{R}^N} \|\overline{\mathbf{S}}_{k+1} - \hat{S}_k(\mathbf{T}^r)\|^2$$

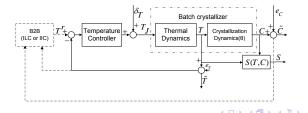


Algorithm

Steps of the ILC algorithm. At each batch k:

- T^r_k is set as the input to the T controller, the batch is executed.
 Š^k_k is estimated from measurements.
- Solution An additive correction of the nominal model is performed: $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k.$
- **(3)** The corrected model is used to design \mathbf{T}_{k+1}^r for the next batch:

$$\mathbf{T}_{k+1}^r = \arg\min_{\mathbf{T}^r \in \mathbb{R}^N} \|\overline{\mathbf{S}}_{k+1} - \hat{S}_k(\mathbf{T}^r)\|^2$$

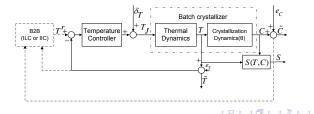


Algorithm

Steps of the ILC algorithm. At each batch k:

- T^r_k is set as the input to the T controller, the batch is executed.
 Š^k_k is estimated from measurements.
- ② An additive correction of the nominal model is performed: $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k.$
- **③** The corrected model is used to design \mathbf{T}_{k+1}^r for the next batch:

$$\mathbf{T}_{k+1}^r = rg\min_{\mathbf{T}^r \in \mathbb{R}^N} \|\overline{\mathbf{S}}_{k+1} - \hat{S}_k(\mathbf{T}^r)\|^2$$



Iterative Identification Control

Implementation

IIC is based on a parametric correction assuming a certain model structure.

 $\hat{S}(\mathbf{T}^{r}, \theta)$ model structure $\hat{S}_{k}(\mathbf{T}^{r}, \hat{\theta}_{k})$ IIC corrected model

Iterative estimation of $\hat{\theta}_k$ combining information from previous measurement.

Given a new measurement $\tilde{\mathbf{Y}}_k = (\tilde{\mathbf{T}}_k \ \tilde{\mathbf{C}}_k)$:

The *a posteriori* probability of θ is computed (Bayes rules):
 θ̂_{k+1} is taken as arg max over θ of the distribution (MAP estimate)

In our case (under simplifying assumptions)

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \left(\|\tilde{\mathbf{C}}_k - \hat{C}(\tilde{\mathbf{T}}_k, \theta)\|_{\Sigma_e^{-1}}^2 + \|\theta - \hat{\theta}_k\|_{\Sigma_{\theta_\nu}^{-1}}^2 \right)$$

A Nonlinear Least Squares problem with a regularization term. Least Squares problem with a regularization term.

Iterative Identification Control

Implementation

IIC is based on a parametric correction assuming a certain model structure.

 $\hat{S}(\mathbf{T}^{r}, \theta)$ model structure $\hat{S}_{k}(\mathbf{T}^{r}, \hat{\theta}_{k})$ IIC corrected model

Iterative estimation of $\hat{\theta}_k$ combining information from previous measurement.

Given a new measurement $\mathbf{\tilde{Y}}_k = (\mathbf{\tilde{T}}_k \ \mathbf{\tilde{C}}_k)$:

- The *a posteriori* probability of θ is computed (Bayes rules):
- $\hat{\theta}_{k+1}$ is taken as arg max over θ of the distribution (MAP estimate)

In our case (under simplifying assumptions)

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \left(\|\mathbf{\tilde{C}}_k - \hat{C}(\mathbf{\tilde{T}}_k, \theta)\|_{\boldsymbol{\Sigma}_e^{-1}}^2 + \|\theta - \hat{\theta}_k\|_{\boldsymbol{\Sigma}_e^{-1}}^2 \right)$$

A Nonlinear Least Squares problem with a regularization term. Least Squares problem with a regularization term.

Iterative Identification Control

Implementation

IIC is based on a parametric correction assuming a certain model structure.

 $\hat{S}(\mathbf{T}^{r}, \theta)$ model structure $\hat{S}_{k}(\mathbf{T}^{r}, \hat{\theta}_{k})$ IIC corrected model

Iterative estimation of $\hat{\theta}_k$ combining information from previous measurement.

Given a new measurement $\mathbf{\tilde{Y}}_k = (\mathbf{\tilde{T}}_k \ \mathbf{\tilde{C}}_k)$:

- The *a posteriori* probability of θ is computed (Bayes rules):
- $\hat{\theta}_{k+1}$ is taken as arg max over θ of the distribution (MAP estimate)

In our case (under simplifying assumptions)

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \left(\|\mathbf{\tilde{C}}_k - \hat{C}(\mathbf{\tilde{T}}_k, \theta)\|_{\boldsymbol{\Sigma}_e^{-1}}^2 + \|\theta - \hat{\theta}_k\|_{\boldsymbol{\Sigma}_{\theta_k}^{-1}}^2 \right)$$

A Nonlinear Least Squares problem with a regularization term.

Iterative Identification Control Algorithm

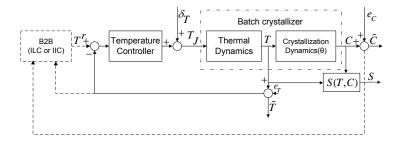
Steps of the IIC algorithm. At each k:

- T^r_k is set as the input to the T controller, the batch is executed. (C̃_k, T̃_k)[⊤] are measured.
- So The updated parameter $\hat{\theta}_k$ is computed and the corrected model is defined as $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r, \hat{\theta}_k)$.
- The corrected model is used to design T^r_{k+1} for the next batch to track a set-point S
 _{k+1}

$$\mathbf{T}_{k+1}^{r} = \arg\min_{\mathbf{T}^{r} \in \mathbb{R}^{N}} \|\overline{\mathbf{S}}_{k+1} - \hat{S}_{k}(\mathbf{T}^{r})\|^{2}$$

Scenario

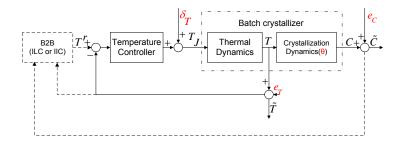
- $N_{it} = 30$ iterations (batches)
- Objective: tracking of a set-point $\overline{\mathbf{S}}_k$
- Set-point change in batch 11
- \mathbf{T}^r updated from batch to batch using ILC and IIC



Cases

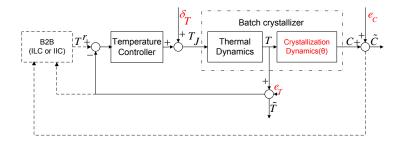
Simulation study in two different scenarios

Case 1: Disturbances + parametric model mismatch

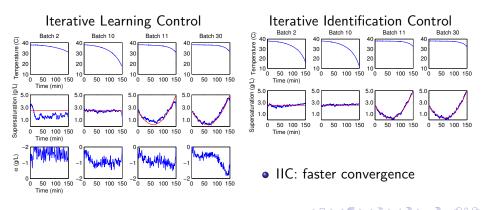


Cases

Simulation study in two different scenarios Case 2: Disturbances + structural model mismatch

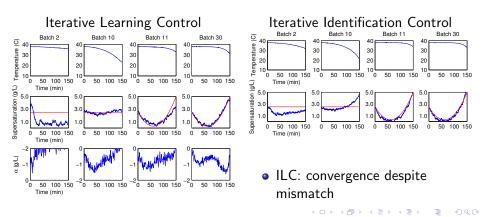


Results for Case 1



Case 2

Results for Case 2



Summary

Iterative Learning

- Tracking in presence of structure mismatch
- Close-form algorithm
- Slower convergence of the algorithm
- Learning of a trajectory: degradation if we change the set-point

Iterative Identification

- Faster convergence with right model structure
- Learning of the full dynamics: easy to follow different setpoint
- Performance degradation with mismatches
- Numerical solution NLSQ required

★ ∃ >

Conclusions

A batch-to-batch architecture for cooling crystallization.

- Uses measurements available at the end of a batch.
- Built on top of standard T control.
- Can cope with model mismatches and disturbances.
- Experiments going on.

Future work

- Introduce excitation signals
- Combine ILC and IIC strategies.

Thank you. Questions?

▲ 王 → 王 → へへ CDC 2012 19 / 19

イロト イ団ト イヨト イヨト