# EXPERIMENT DESIGN FOR BATCH-TO-BATCH MODEL-BASED LEARNING CONTROL

Marco Forgione<sup>1</sup>, Xavier Bombois<sup>1</sup>, Paul Van den Hof<sup>2</sup>

<sup>1</sup>Delft University of Technology Delft Center for Systems and Control

<sup>2</sup>Eindhoven University of Technology Department of Electrical Engineering

Benelux Meeting on Systems and Control 2013

## Motivations

For model-based control, trade-off between modeling (identification) and control effort.

- The control performance depends on the quality of the model.
- The quality of a model depends on the experimental data.
- Experiments can be expensive (time, materials, performance degradation).

#### Research Question:

"Can we design experiments in such a way that the overall performance is optimized?"

#### NOTE:

We want to include both the cost for identification and the benefit achieved for control.

## Motivations

For model-based control, trade-off between modeling (identification) and control effort.

- The control performance depends on the quality of the model.
- The quality of a model depends on the experimental data.
- Experiments can be expensive (time, materials, performance degradation).

### Research Question:

"Can we design experiments in such a way that the overall performance is optimized?"

#### NOTE:

We want to include both the cost for identification and the benefit achieved for control.

## Motivations

For model-based control, trade-off between modeling (identification) and control effort.

- The control performance depends on the quality of the model.
- The quality of a model depends on the experimental data.
- Experiments can be expensive (time, materials, performance degradation).

#### Research Question:

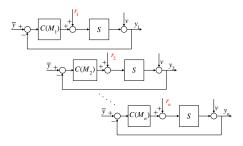
"Can we design experiments in such a way that the overall performance is optimized?"

#### NOTE:

We want to include both the cost for identification and the benefit achieved for control.

Linear, SISO time-invariant system operated in closed-loop over n consecutive intervals (batches).

- After a batch, identification and controller re-design.
- Excitation signal r<sub>k</sub> in each batch.

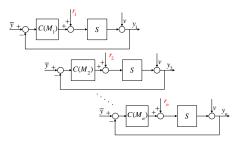


Excitation  $r_k$  has a dual effect. Worsens performance during the batch k, but can improve performance for batch k+1.

"Design the excitation signals in order to optimize the performance over n batches."

Linear, SISO time-invariant system operated in closed-loop over n consecutive intervals (batches).

- After a batch, identification and controller re-design.
- Excitation signal r<sub>k</sub> in each batch.

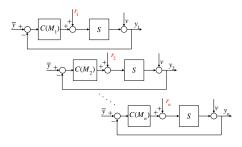


Excitation  $r_k$  has a dual effect. Worsens performance during the batch k, but can improve performance for batch k + 1.

"Design the excitation signals in order to optimize the performance over n batches."

Linear, SISO time-invariant system operated in closed-loop over n consecutive intervals (batches).

- After a batch, identification and controller re-design.
- Excitation signal r<sub>k</sub> in each batch.



Excitation  $r_k$  has a dual effect. Worsens performance during the batch k, but can improve performance for batch k+1.

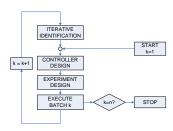
"Design the excitation signals in order to optimize the performance over n batches."

3 / 18

- Real system S:  $y = G_o(q)u + H_o(q)e$ in a model structure  $M(\theta)$ , i.e.  $S = \mathcal{M}(\theta_o)$ .
- $\mathcal{M}( heta)$  regular, initial estimate  $\hat{ heta}_1 \sim \mathcal{N}( heta_o, R_1^{-1})$  available

#### Before a batch:

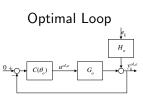
- Identification
- Controller design
- Experiment design

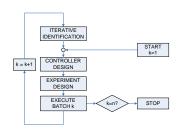


- Real system S:  $y = G_o(q)u + H_o(q)e$ in a model structure  $M(\theta)$ , i.e.  $S = \mathcal{M}(\theta_o)$ .
- $\mathcal{M}(\theta)$  regular, initial estimate  $\hat{\theta}_1 \sim \mathcal{N}(\theta_o, R_1^{-1})$  available

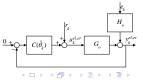
#### Before a batch:

- Identification
- Controller design
- Experiment design





## Experimental Loop



## Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

- Data  $(y_k, u_k)$  are collected.
- Previous estimate  $\hat{\theta}_k \sim \mathcal{N}(\theta_o, R_k^{-1})$  is available.

The updated MAP parameter estimate  $\hat{ heta}_{k+1}$  is computed as

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \frac{1}{\sigma_e^2} \left\| \epsilon \right\|_2^2 + \left\| \theta - \hat{\theta}_k \right\|_{R_k}^2$$

The parameter  $\hat{\theta}_{k+1} \sim \mathcal{N}(\theta_o, R_{k+1}^{-1})$  with

$$R_{k+1} = R_k + I_k.$$

 $I_k$  is the information matrix relative to the experiment k.  $I_k$  is a linear function of the spectrum of excitation signal  $r_k$ .

## Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

- Data  $(y_k, u_k)$  are collected.
- Previous estimate  $\hat{\theta}_k \sim \mathcal{N}(\theta_o, R_k^{-1})$  is available.

The updated MAP parameter estimate  $\hat{\theta}_{k+1}$  is computed as

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \frac{1}{\sigma_e^2} \left\| \epsilon \right\|_2^2 + \left\| \theta - \hat{\theta}_k \right\|_{R_k}^2$$

The parameter  $\hat{\theta}_{k+1} \sim \mathcal{N}(\theta_o, R_{k+1}^{-1})$  with

$$R_{k+1} = R_k + I_k.$$

 $I_k$  is the information matrix relative to the experiment k.  $I_k$  is a linear function of the spectrum of excitation signal  $r_k$ .

## Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

- Data  $(y_k, u_k)$  are collected.
- Previous estimate  $\hat{\theta}_k \sim \mathcal{N}(\theta_o, R_k^{-1})$  is available.

The updated MAP parameter estimate  $\hat{\theta}_{k+1}$  is computed as

$$\hat{\theta}_{k+1} = \arg\min_{\theta} \frac{1}{\sigma_e^2} \left\| \epsilon \right\|_2^2 + \left\| \theta - \hat{\theta}_k \right\|_{R_k}^2$$

The parameter  $\hat{\theta}_{k+1} \sim \mathcal{N}(\theta_o, R_{k+1}^{-1})$  with

$$R_{k+1} = R_k + I_k.$$

 $I_k$  is the information matrix relative to the experiment k.  $I_k$  is a linear function of the spectrum of excitation signal  $r_k$ .

# Controller Design

Based on the parameter  $\hat{\theta}_k$ , the controller  $C_k = C(\hat{\theta}_k)$  is determined Different controller design strategies  $C(\cdot)$  possible. . .

Here we use an  $\mathcal{H}_2$  criterion (mixed sensitivities). Minimize weighted sum of input/output power.

$$C(\hat{\theta}_k) = \arg\min_{K} \left\| \frac{\frac{H(\hat{\theta}_k)}{1 + KG(\hat{\theta}_k)}}{\frac{\sqrt{\gamma}KH(\hat{\theta}_k)}{1 + KG(\hat{\theta}_k)}} \right\|_{\mathcal{H}_2}^2$$

# Controller Design

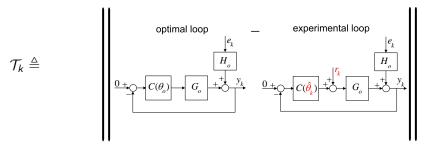
Based on the parameter  $\hat{\theta}_k$ , the controller  $C_k = C(\hat{\theta}_k)$  is determined Different controller design strategies  $C(\cdot)$  possible...

Here we use an  $\mathcal{H}_2$  criterion (mixed sensitivities). Minimize weighted sum of input/output power.

$$C(\hat{\theta}_k) = \arg\min_{K} \left\| \frac{\frac{H(\hat{\theta}_k)}{1 + KG(\hat{\theta}_k)}}{\frac{\sqrt{\gamma}KH(\hat{\theta}_k)}{1 + KG(\hat{\theta}_k)}} \right\|_{\mathcal{H}_2}^2.$$

#### Overview

Define the total cost for a single batch as



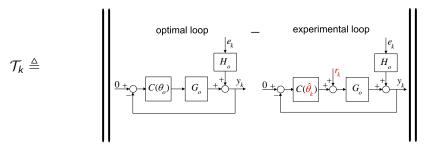
Excitation signals  $r_k$  are designed in order to

- minimize  $\sum_{k=1}^{n} \mathcal{T}_k$  (in a stochastic sense)
- satisfy constraints for each individual batch.



#### Overview

Define the total cost for a single batch as



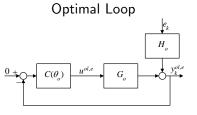
Excitation signals  $r_k$  are designed in order to

- minimize  $\sum_{k=1}^{n} \mathcal{T}_k$  (in a stochastic sense)
- satisfy constraints for each individual batch.

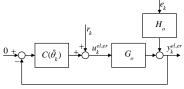
Total Cost, Application Cost & Excitation Cost

Total Cost: power of output difference between the two loops:

$$\mathcal{T}_k \triangleq E[(y_k^{ol,e} - y_k^{el,er})^2].$$







Since  $r_k \perp e_k$ :

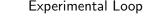
$$\underbrace{E[(y_k^{ol,e} - y_k^{el,er})^2]}_{\text{Total Cost } \mathcal{V}_k} \underbrace{Excitation \ \text{Cost } \mathcal{E}_k}_{\text{Excitation Cost } \mathcal{E}_k}$$

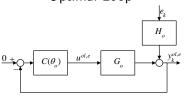
Total Cost, Application Cost & Excitation Cost

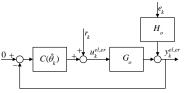
Total Cost: power of output difference between the two loops:

$$\mathcal{T}_k \triangleq E[(y_k^{ol,e} - y_k^{el,er})^2].$$









Since  $r_k \perp e_k$ :

$$\overbrace{E[(y_k^{ol,e} - y_k^{el,er})^2]}^{\text{Total Cost } \mathcal{T}_k} = \overbrace{E[(y_k^{ol,e} - y_k^{el,e})^2]}^{\text{Control Cost } \mathcal{V}_k} + \overbrace{E[(y_k^{el,r})^2]}^{\text{Excitation Cost } \mathcal{E}_k}$$

#### Objective

• Experiment Design Problem (k = 1): minimize the summation of the total cost over the n batches

$$\min \sum_{k=1}^n \mathcal{T}_k$$
 subject to  $\mathcal{T}_k \leq \bar{\mathcal{T}}_k, \; k=1,2,\ldots,n$ 

- Design variables: (spectra of) excitation signals  $r_1, r_2, \ldots, r_n$
- $\mathcal{T}_k$  random variables  $\Rightarrow$  minimization in a stochastic sense. Worst-case with a given probability  $\alpha$ .

How to evaluate the worst case performance?

#### Objective

• Experiment Design Problem (k = 1): minimize the summation of the total cost over the n batches

$$\min \sum_{k=1}^n \mathcal{T}_k$$
 subject to  $\mathcal{T}_k \leq \bar{\mathcal{T}}_k, \ k=1,2,\ldots,n$ 

- Design variables: (spectra of) excitation signals  $r_1, r_2, \ldots, r_n$
- $\mathcal{T}_k$  random variables  $\Rightarrow$  minimization in a stochastic sense. Worst-case with a given probability  $\alpha$ .

How to evaluate the worst case performance?

#### Worst-case control cost

From Parseval relation  $\mathcal{V}_k = E[(y_k^{ol,e} - y_k^{el,e})^2] =$ 

$$\mathcal{V}_{k}(\theta_{o},\hat{\theta}_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{1}{1 + C(\hat{\theta}_{k})G(\theta_{o})} - \frac{1}{1 + C(\theta_{o})G(\theta_{o})} \right|^{2} |H|^{2} (\theta_{o}) \sigma_{e}^{2} d\omega$$

We approximate  $V_k(\theta_o, \hat{\theta}_k)$  as a quadratic function of  $\theta_o$  locally around  $\hat{\theta}_k$ :

$$\mathcal{V}_k( heta_o, \hat{ heta}_k) pprox rac{1}{2} ( heta_o - \hat{ heta}_k)^{ op} V''(\hat{ heta}_k) ( heta_o - \hat{ heta}_k).$$

Since  $\theta_o - \hat{\theta}_k \sim \mathcal{N}(0, R_k^{-1})$ , using standard ellipsoids we can find the worst-case  $\mathcal{V}_k$  with probability  $\alpha$  as

$$\mathcal{V}_k^{\mathrm{wc}} = \min_{\lambda_k} \frac{1}{\lambda_k}$$
 s.t  $R_k \ge \lambda_k \frac{V'' \chi_{\alpha}^2(n)}{2}$  (convex optimization)

#### Worst-case control cost

From Parseval relation  $V_k = E[(y_k^{ol,e} - y_k^{el,e})^2] =$ 

$$\mathcal{V}_{k}(\theta_{o},\hat{\theta}_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{1}{1 + C(\hat{\theta}_{k})G(\theta_{o})} - \frac{1}{1 + C(\theta_{o})G(\theta_{o})} \right|^{2} |H|^{2} (\theta_{o}) \sigma_{e}^{2} d\omega$$

We approximate  $V_k(\theta_o, \hat{\theta}_k)$  as a quadratic function of  $\theta_o$  locally around  $\hat{\theta}_k$ :

$$\mathcal{V}_k(\theta_o, \hat{\theta}_k) \approx \frac{1}{2} (\theta_o - \hat{\theta}_k)^\top V''(\hat{\theta}_k) (\theta_o - \hat{\theta}_k).$$

Since  $\theta_o - \hat{\theta}_k \sim \mathcal{N}(0, R_k^{-1})$ , using standard ellipsoids we can find the worst-case  $\mathcal{V}_k$  with probability  $\alpha$  as

$$\mathcal{V}_k^{\mathrm{wc}} = \min_{\lambda_k} \frac{1}{\lambda_k}$$
 s.t  $R_k \ge \lambda_k \frac{V'' \chi_{\alpha}^2(n)}{2}$  (convex optimization)

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ (\*)

#### Worst-case control cost

From Parseval relation  $V_k = E[(y_k^{ol,e} - y_k^{el,e})^2] =$ 

$$\mathcal{V}_{k}(\theta_{o},\hat{\theta}_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{1}{1 + C(\hat{\theta}_{k})G(\theta_{o})} - \frac{1}{1 + C(\theta_{o})G(\theta_{o})} \right|^{2} |H|^{2} (\theta_{o}) \sigma_{e}^{2} d\omega$$

We approximate  $V_k(\theta_o, \hat{\theta}_k)$  as a quadratic function of  $\theta_o$  locally around  $\hat{\theta}_k$ :

$$\mathcal{V}_k(\theta_o, \hat{\theta}_k) \approx \frac{1}{2} (\theta_o - \hat{\theta}_k)^\top V''(\hat{\theta}_k) (\theta_o - \hat{\theta}_k).$$

Since  $\theta_o - \hat{\theta}_k \sim \mathcal{N}(0, R_k^{-1})$ , using standard ellipsoids we can find the worst-case  $\mathcal{V}_k$  with probability  $\alpha$  as

$$\mathcal{V}_k^{\mathrm{wc}} = \min_{\lambda_k} \frac{1}{\lambda_k}$$
 s.t  $R_k \ge \lambda_k \frac{V'' \chi_{\alpha}^2(n)}{2}$  (convex optimization)

#### Worst-case excitation cost

The excitation cost

$$\mathcal{E}_{k}(\theta_{o},\hat{\theta}_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{G(\theta_{o})}{1 + C(\hat{\theta}_{k})G(\theta_{o})} \right|^{2} \frac{\Phi_{k}^{r}(\omega)}{d\omega}.$$

## depends on the decision variables!

Solution based on Randomized Algorithms... Using the initial estimate  $\hat{\theta}_1 \sim \mathcal{N}(\theta_o, R_1^{-1})$ :

- ① Draw q samples  $\tilde{\theta}_s$ .
- ② Compute  $\mathcal{E}_{k,s} = \mathcal{E}_k(\tilde{\theta}_s, \theta_k)$  for  $s = 1, \dots, q$ .
- ① Extract the empirical maximum  $\mathcal{E}_k^{\mathrm{wc}} = \max_s \ \mathcal{E}_{k,s}.$

The number of samples q can be tuned such that  $\mathcal{E}_k^{\mathrm{wc}}$  is the Worst Case Excitation Cost with probability  $\alpha$  (randomized algorithms).

#### Worst-case excitation cost

The excitation cost

$$\mathcal{E}_{k}(\theta_{o},\hat{\theta}_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{G(\theta_{o})}{1 + C(\hat{\theta}_{k})G(\theta_{o})} \right|^{2} \frac{\Phi_{k}^{r}(\omega)}{d\omega}.$$

depends on the decision variables!

Solution based on Randomized Algorithms...

Using the initial estimate  $\hat{\theta}_1 \sim \mathcal{N}(\theta_o, R_1^{-1})$  :

- **1** Draw q samples  $\tilde{\theta}_s$ .
- **2** Compute  $\mathcal{E}_{k,s} = \mathcal{E}_k(\tilde{\theta}_s, \theta_k)$  for  $s = 1, \dots, q$ .
- **3** Extract the empirical maximum  $\mathcal{E}_k^{\mathrm{wc}} = \mathsf{max}_s \ \mathcal{E}_{k,s}.$

The number of samples q can be tuned such that  $\mathcal{E}_k^{\mathrm{wc}}$  is the Worst Case Excitation Cost with probability  $\alpha$  (randomized algorithms).

Worst-case excitation cost

The excitation cost

$$\mathcal{E}_k(\theta_o, \hat{\theta}_k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{G(\theta_o)}{1 + C(\hat{\theta}_k) G(\theta_o)} \right|^2 \frac{\Phi_k^r(\omega)}{d\omega}.$$

depends on the decision variables!

Solution based on Randomized Algorithms...

Using the initial estimate  $\hat{\theta}_1 \sim \mathcal{N}(\theta_o, R_1^{-1})$  :

- **1** Draw q samples  $\tilde{\theta}_s$ .
- **2** Compute  $\mathcal{E}_{k,s} = \mathcal{E}_k(\tilde{\theta}_s, \theta_k)$  for  $s = 1, \dots, q$ .
- ullet Extract the empirical maximum  $\mathcal{E}_k^{\mathrm{wc}} = \mathsf{max}_s \ \mathcal{E}_{k,s}.$

The number of samples q can be tuned such that  $\mathcal{E}_k^{\mathrm{wc}}$  is the Worst Case Excitation Cost with probability  $\alpha$  (randomized algorithms).

#### Further Approximation

We will need to evaluate  $\mathcal{V}_k^{\mathrm{wc}}$ ,  $\mathcal{E}_k^{\mathrm{wc}}$  for  $k=1,\ldots,n$  before the execution of the first batch.

For the Control Cost

$$\mathcal{V}_{k}^{\text{wc}} = \min_{\lambda_{k}} \frac{1}{\lambda_{k}} \quad \text{s.t } R_{k}(\theta_{o}, \hat{\theta}_{k}, \dots, \hat{\theta}_{2}, \hat{\theta}_{1}) \geq \lambda_{k} \frac{V''(\hat{\theta}_{k})\chi_{\alpha}^{2}(n)}{2}$$

For the Excitation Cost

$$\mathcal{E}_k^{ ext{wc}} = \max_{s} \; \mathcal{E}_k( ilde{ heta}_s, ilde{ heta}_k)$$

Quantities in red are not known!

Typical chicken & the egg issue of Experiment Design.

They are all replaced with  $\hat{ heta}_1$ 

#### Further Approximation

We will need to evaluate  $\mathcal{V}_k^{\mathrm{wc}}$ ,  $\mathcal{E}_k^{\mathrm{wc}}$  for  $k=1,\ldots,n$  before the execution of the first batch.

For the Control Cost

$$\mathcal{V}_k^{\mathrm{wc}} = \min_{\lambda_k} \frac{1}{\lambda_k} \qquad \text{s.t } R_k(\hat{\theta}_1, \hat{\theta}_1, \dots, \hat{\theta}_1, \hat{\theta}_1) \geq \lambda_k \frac{V''(\hat{\theta}_1)\chi_{\alpha}^2(n)}{2}$$

For the Excitation Cost

$$\mathcal{E}_k^{\mathrm{wc}} = \max_{s} \; \mathcal{E}_k( ilde{ heta}_s, ilde{ heta}_1)$$

Quantities in red are not known!

Typical chicken & the egg issue of Experiment Design.

They are all replaced with  $\hat{\theta}_1$ .

#### **Formulation**

Let us define

$$\mathcal{T}_k^{\mathrm{wc}} = \mathcal{V}_k^{\mathrm{wc}} + \mathcal{E}_k^{\mathrm{wc}}, \ k = 1, 2, \dots, n.$$

The Experiment Design Problem (k = 1)

$$egin{array}{ll} \min_{\Phi_{r_1},\ldots,\Phi_{r_n}} & \sum_{k=1}^n \mathcal{T}_k^{\mathrm{wc}} & ext{subject to} \ \mathcal{T}_k^{\mathrm{wc}} \leq ar{\mathcal{T}}_k, \ k=1,2,\ldots,n. \end{array}$$

can be written as a SemiDefinite Program (SDP).

#### Formulation

Let us define

$$\mathcal{T}_k^{\mathrm{wc}} = \mathcal{V}_k^{\mathrm{wc}} + \mathcal{E}_k^{\mathrm{wc}}, \ k = 1, 2, \dots, n.$$

The Experiment Design Problem (k = 1)

$$egin{array}{ll} \min_{\Phi_{r_1},\ldots,\Phi_{r_n}} & \sum_{k=1}^n \mathcal{T}_k^{\mathrm{wc}} & ext{subject to} \ \mathcal{T}_k^{\mathrm{wc}} \leq ar{\mathcal{T}}_k, \ k=1,2,\ldots,n. \end{array}$$

can be written as a SemiDefinite Program (SDP).

#### Receding Horizon Implementation

- ① Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- ③ Parameter  $\hat{\theta}_2$  identified from the data.
- **©** Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \ldots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- 6 . . .

#### Receding Horizon Implementation

- **1** Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- ③ Parameter  $\hat{\theta}_2$  identified from the data.
- **©** Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \dots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- 6 . . .

#### Receding Horizon Implementation

- Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- ③ Parameter  $\hat{\theta}_2$  identified from the data.
- ① Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \dots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- **6** . . .

#### Receding Horizon Implementation

- Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- 3 Parameter  $\hat{\theta}_2$  identified from the data.
- **©** Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \dots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- 6 ...

#### Receding Horizon Implementation

- Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- 3 Parameter  $\hat{\theta}_2$  identified from the data.
- **②** Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \ldots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- 6 ...

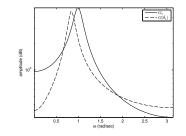
#### Receding Horizon Implementation

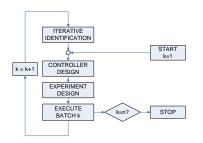
- Experiment design for batch 1 solved based on  $\hat{\theta}_1$ . Spectra  $(\Phi_{r_1}, \dots, \Phi_{r_n})$  found.
- ② Signal  $r_1$  applied during the batch 1. Batch executed, data  $(y_1, u_1)$  collected.
- 3 Parameter  $\hat{\theta}_2$  identified from the data.
- **②** Experiment design for batch 1 solved based on  $\hat{\theta}_2$ . New spectra  $(\Phi_{r_2}, \ldots, \Phi_{r_n})$  found.
- **5** Signal  $r_2$  applied during the batch 2. Data  $(y_2, u_2)$  collected.
- **6** . . .

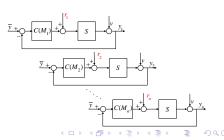
## Simulation Case

Second-order system  $S_o$  in a BJ model structure.

- n = 10 batches
- of length N = 200
- Constraints:
  - $T_k < 0.7$  for k = 1, ..., 6.
  - $T_k \le 0.05$  for k = 7, ..., 10.

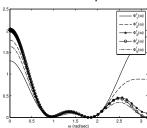






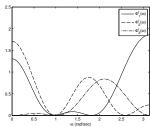
## Simulation Case

## **Excitation Spectra**

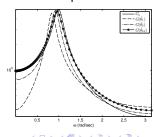


# 

## Excitation Spectra RH



## Bode plot of *G*



## Conclusions

## An Experiment Design framework for batch systems

- Optimization of the overall performance.
- No distinction between identification and control batches.
- Excitation only when it pays back.

## Open issues

- Approximations to compute the worst-case. Analysis?
- Batch systems are often nonlinear and "short".
- Initial conditions plays a significative role.

## Conclusions

## An Experiment Design framework for batch systems

- Optimization of the overall performance.
- No distinction between identification and control batches.
- Excitation only when it pays back.

## Open issues

- Approximations to compute the worst-case. Analysis?
- Batch systems are often nonlinear and "short".
- Initial conditions plays a significative role.

# Thank you. Questions?