
Experiment design for batch-to-batch
model-based learning control

Marco Forgione1, Xavier Bombois1, Paul Van den Hof2

1Delft University of Technology
Delft Center for Systems and Control

2Eindhoven University of Technology
Department of Electrical Engineering

Benelux Meeting on Systems and Control 2013

Marco Forgione (TUD) Experiment Design Benelux Meeting 2013 1 / 18



Motivations

For model-based control,
trade-off between modeling (identification) and control effort.

The control performance depends on the quality of the model.

The quality of a model depends on the experimental data.

Experiments can be expensive (time, materials, performance
degradation).

Research Question:
“Can we design experiments in such a way that the overall performance is
optimized?”

NOTE:
We want to include both the cost for identification and the benefit
achieved for control.
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The Framework

Linear, SISO time-invariant system operated in closed-loop
over n consecutive intervals (batches).

After a batch, identification and
controller re-design.

Excitation signal rk in each
batch.
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Excitation rk has a dual effect. Worsens performance during the batch k,
but can improve performance for batch k + 1.

“Design the excitation signals in order to optimize the performance over n
batches.”
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The Framework

Real system S: y = Go(q)u + Ho(q)e
in a model structure M(θ), i.e. S =M(θo).

M(θ) regular, initial estimate θ̂1 ∼ N (θo ,R
−1
1 ) available

Before a batch:

Identification

Controller design

Experiment design

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1
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Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

Data (yk , uk) are collected.

Previous estimate θ̂k ∼ N (θo ,R
−1
k ) is available.

The updated MAP parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

‖ε‖2
2 +

∥∥∥θ − θ̂k∥∥∥2

Rk

The parameter θ̂k+1 ∼ N (θo ,R
−1
k+1) with

Rk+1 = Rk + Ik .

Ik is the information matrix relative to the experiment k .
Ik is a linear function of the spectrum of excitation signal rk .

Marco Forgione (TUD) Experiment Design Benelux Meeting 2013 5 / 18



Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

Data (yk , uk) are collected.

Previous estimate θ̂k ∼ N (θo ,R
−1
k ) is available.

The updated MAP parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

‖ε‖2
2 +

∥∥∥θ − θ̂k∥∥∥2

Rk

The parameter θ̂k+1 ∼ N (θo ,R
−1
k+1) with

Rk+1 = Rk + Ik .

Ik is the information matrix relative to the experiment k .
Ik is a linear function of the spectrum of excitation signal rk .

Marco Forgione (TUD) Experiment Design Benelux Meeting 2013 5 / 18



Iterative Identification

Using a Bayesian identification scheme. When the batch k is executed

Data (yk , uk) are collected.

Previous estimate θ̂k ∼ N (θo ,R
−1
k ) is available.

The updated MAP parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

‖ε‖2
2 +

∥∥∥θ − θ̂k∥∥∥2

Rk

The parameter θ̂k+1 ∼ N (θo ,R
−1
k+1) with

Rk+1 = Rk + Ik .

Ik is the information matrix relative to the experiment k .
Ik is a linear function of the spectrum of excitation signal rk .

Marco Forgione (TUD) Experiment Design Benelux Meeting 2013 5 / 18



Controller Design

Based on the parameter θ̂k , the controller Ck = C (θ̂k) is determined
Different controller design strategies C (·) possible. . .

Here we use an H2 criterion (mixed sensitivities).
Minimize weighted sum of input/output power.

C (θ̂k) = arg min
K

∥∥∥∥∥∥
H(θ̂k )

1+KG(θ̂k )√
γKH(θ̂k )

1+KG(θ̂k )

∥∥∥∥∥∥
2

H2

.
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Experiment Design
Overview

Define the total cost for a single batch as

Tk ,
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Excitation signals rk are designed in order to

minimize
∑n

k=1 Tk (in a stochastic sense)

satisfy constraints for each individual batch.
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Experiment Design
Total Cost, Application Cost & Excitation Cost

Total Cost: power of output difference between the two loops:

Tk , E [(yol ,ek − y el ,erk )2].

Optimal Loop
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Since rk ⊥ ek :

Total Cost Tk︷ ︸︸ ︷
E [(yol ,ek − y el ,erk )2] =

Control Cost Vk︷ ︸︸ ︷
E [(yol ,ek − y el ,ek )2] +

Excitation Cost Ek︷ ︸︸ ︷
E [(y el ,rk )2] .
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Experiment Design
Objective

Experiment Design Problem (k = 1):
minimize the summation of the total cost over the n batches

min
n∑

k=1

Tk subject to

Tk ≤ T̄k , k = 1, 2, . . . , n

Design variables: (spectra of) excitation signals r1, r2, . . . , rn

Tk random variables ⇒ minimization in a stochastic sense.
Worst-case with a given probability α.

How to evaluate the worst case performance?
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Experiment Design
Worst-case control cost

From Parseval relation Vk = E [(yol ,ek − y el ,ek )2] =

Vk(θo , θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ 1

1 + C (θ̂k)G (θo)
− 1

1 + C (θo)G (θo)

∣∣∣∣∣
2

|H|2 (θo)σ2
e dω

We approximate Vk(θo , θ̂k) as a quadratic function of θo locally around θ̂k :

Vk(θo , θ̂k) ≈ 1

2
(θo − θ̂k)>V ′′(θ̂k)(θo − θ̂k).

Since θo − θ̂k ∼ N (0,R−1
k ), using standard ellipsoids we can find the

worst-case Vk with probability α as

Vwck = min
λk

1

λk
s.t Rk ≥ λk

V ′′χ2
α(n)

2
(convex optimization)
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Experiment Design
Worst-case excitation cost

The excitation cost

Ek(θo , θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ G (θo)

1 + C (θ̂k)G (θo)

∣∣∣∣∣
2

Φr
k(ω) dω.

depends on the decision variables!

Solution based on Randomized Algorithms. . .
Using the initial estimate θ̂1 ∼ N (θo ,R

−1
1 ) :

1 Draw q samples θ̃s .

2 Compute Ek,s = Ek(θ̃s , θk) for s = 1, . . . , q.

3 Extract the empirical maximum Ewck = maxs Ek,s .

The number of samples q can be tuned such that Ewck is the Worst Case
Excitation Cost with probability α (randomized algorithms).
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Experiment Design
Further Approximation

We will need to evaluate Vwck , Ewck for k = 1, . . . , n before the execution of
the first batch.

For the Control Cost

Vwck = min
λk

1

λk
s.t Rk(θo , θ̂k , . . . , θ̂2, θ̂1) ≥ λk

V ′′(θ̂k)χ2
α(n)

2

For the Excitation Cost

Ewck = max
s
Ek(θ̃s , θ̂k)

Quantities in red are not known!
Typical chicken & the egg issue of Experiment Design.
They are all replaced with θ̂1.
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Experiment Design
Formulation

Let us define
T wc
k = Vwck + Ewck , k = 1, 2, . . . , n.

The Experiment Design Problem (k = 1)

min
Φr1 ,...,Φrn

n∑
k=1

T wc
k subject to

T wc
k ≤ T̄k , k = 1, 2, . . . , n.

can be written as a SemiDefinite Program (SDP).
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Experiment Design
Receding Horizon Implementation

In order to alleviate the chicken & the egg issue,
implementation in Receding Horizon over the batches.

1 Experiment design for batch 1 solved based on θ̂1.
Spectra (Φr1 , . . . ,Φrn) found.

2 Signal r1 applied during the batch 1. Batch executed, data (y1, u1)
collected.

3 Parameter θ̂2 identified from the data.

4 Experiment design for batch 1 solved based on θ̂2. New spectra
(Φr2 , . . . ,Φrn) found.

5 Signal r2 applied during the batch 2. Data (y2, u2) collected.

6 . . .
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Simulation Case
Second-order system So in a BJ model structure.

n = 10 batches

of length N = 200

Constraints:
I Tk ≤ 0.7 for k = 1, . . . , 6.
I Tk ≤ 0.05 for k = 7, . . . , 10.
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Simulation Case
Excitation Spectra
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Conclusions

An Experiment Design framework for batch systems

Optimization of the overall performance.

No distinction between identification and control batches.

Excitation only when it pays back.

Open issues

Approximations to compute the worst-case. Analysis?

Batch systems are often nonlinear and “short”.

Initial conditions plays a significative role.
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Thank you.
Questions?
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