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Process Description
Batch Crystallization

Separation and purification process of industrial interest.
A solution is cooled down, solid material (crystals) is produced.

Process described by

Temperature Dynamics (linear, known or easy to estimate)

Crystallization Dynamics (nonlinear PDE, parametric + structural
uncertainties)

Process disturbance, measurement noise on the outputs
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Process Description
Control Strategies

Only the crystallizer temperature is on-line measured and controlled.
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Advanced strategies proposed. They require additional on-line
measurements.
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Batch-to-Batch Strategies
Overview

Additional measurements available at the end of a batch.
For this reason, B2B control strategies. Tr

k updated from batch to batch.
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Objective for batch k: tracking of supersaturation profile Sk .

Sk is a static function of the measured output Tk ,Ck .
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Batch-to-Batch Strategies
Iterative Learning Control

ILC uses an additive correction offf a nominal model from Tr to S.

Ŝ(Tr ) , FST r (Tr ; θ̂) nominal model

Ŝk(Tr ) , Ŝ(Tr ) + αk corrected model

Note: Tr ,α,S vector of samples ∈ RN (N = batch length).
We describe the system in discrete, finite time (static mapping).

α can compensate the nominal model for

model mismatch (along the particular trajectory)

effect of repetitive disturbances
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Batch-to-Batch Strategies
Iterative Learning Control

How to estimate the correction vector?

Correction vector should “match” the previous measurement.

αk = S̃k − Ŝ(Tr ) = model error

Due to the effect of disturbances on S̃k , might not be a good solution.

Take into account the deviation from αk−1.

αk = arg min
α∈RN

‖S̃k − (Ŝ(Tr ) + α)‖2
Qα

+ ‖α−αk−1‖2
Sα

However, tuning of Qα,Sα not intuitive.
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Batch-to-Batch Strategies
Iterative Learning Control

We model the real system as a stochastic process evolving in the
iteration domain (batch number)

αk = αk−1+∆αk , ∆αk ∼ N (0,Σ∆)

S̃k = Ŝ(Tr )+αk +vk , vk ∼ N (0,Σv )

Estimate αk|k using the Kalman Filter. Equivalent to the Q.C.

αk : output deviation that will reappear at k + 1

vk : output deviation that will not reappear at k + 1

We model the expected amplitude and frequency content of the
disturbances and the correction vector with Σ∆,Σv .
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Batch-to-Batch Strategies
Iterative Learning Control

Steps of the ILC algorithm. At each k :

1 Tr
k is set as the input to the PI controller, the batch is executed.

S̃k is estimated from measurements.

2 An additive correction of the nominal model is performed:
Ŝk(Tr ) , Ŝ(Tr ) + αk|k .

3 The corrected model is used to design Tr
k+1 for the next batch to

track a set-point Sk+1

Tr
k+1 = arg min

Tr∈RN
‖Sk+1 − Ŝk(Tr )‖2
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Batch-to-Batch Strategies
Iterative Identification Control

IIC is based on a parametric correction assuming a certain model structure

Ŝ(Tr ) , FST r (Tr ; θ) model structure

Ŝk(Tr ) , FST r (Tr , θ̂k) corrected model

Recursive estimation of θ̂k in a Bayesian framework.
Given a measurement ỹk = (T̃k C̃k)>:

The a posteriori distribution pθ|ỹk (θ|ỹk) is computed (Bayes rules)

θ̂k is taken as the max over θ of the distribution (MAP estimate)

In our case (under simplifying assumptions)

θ̂k = arg min
θ

(
‖C̃k − FCT (T̃k , θ̂k)‖2

Σ−1
e

+ ‖θ − θ̂k−1‖2
Σ−1

θk−1

)
A Nonlinear Least Squares problem with a regularization term.
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Batch-to-Batch Strategies
Iterative Identification Control

Steps of the IIC algorithm. At each k :

1 Tr
k is set as the input to the PI controller, the batch is executed.

(C̃k , T̃k)> are measured.

2 The updated parameter θ̂k is computed and the corrected model is
defined as Ŝk(Tr ) , FST r (Tr , θ̂k).

3 The corrected model is used to design Tr
k+1 for the next batch to

track a set-point Sk+1
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k+1 = arg min
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Simulation Results
Scenario

Objective: tracking of a set-point Sk

Nit = 30 iterations (batches)

Set-point change in batch 11

Tr
k updated from batch to batch using ILC and IIC
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Simulation Results
Cases

Simulation study in two different scenarios
Case 1: Disturbances + parametric model mismatch
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Low-frequency disturbance on the jacket temperature TJ
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Simulation Results
Cases

Simulation study in two different scenarios
Case 2: Disturbances + structural model mismatch
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Common situation in practice
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Simulation Results
Case 1

Results for Case 1

Iterative Learning Control
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Simulation Results
Case 2

Results for Case 2

Iterative Learning Control
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Simulation Results
Overall results

Root Mean Square of the tracking Error 1√
N
‖Sk − S̃k‖
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Control of Batch Cooling Crystallization
ILC vc IIC

Iterative Learning

Tracking in presence of
structure mismatch

Close-form algorithm

Slower convergence of the
algorithm

Learning of a trajectory:
convergence lost if we
change the set-point

Iterative Identification

Fast convergence for the
nominal case

Learning of the full
dynamics: easy to follow
different setpoint

Performance degradation
with mismatches

Numerical optimization
required

Combinig the strategies

Consider system varying from batch to batch
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Thank you.
Questions?
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