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Introduction

Scope of the work: fast data-driven development of mathematical models.
Particular focus on process models

@ medium- or large-scale models

@ may be intrinsically non-linear
(e.g. batch)

@ severe structural and parametric
uncertainties

@ slow dynamics (time for advanced
control available)

Example: batch cooling crystallization.
Important separation and purification
process in chemical and pharmaceutical
sector
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Introduction
Model building procedure

A rigorous procedure to develop a model from both data and knowledge.
According to

G.Franceschini, S. Macchietto

Model-based design of experiments for parameter precision: State of the art
Chemical Engineering Science, Elvisier 2008

FINAL
Propose PRELIMINARY ' MODEL ».| PARAMETER VALIDATED
MODEL/S TESTS A DISCRIMINATION [ A PRECISION MODEL

Figure: Model development procedure

Only the first step requires physical insight, the following steps constitue
the central part of the procedure.
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Figure: Model development procedure

Only the first step requires physical insight, the following steps constitue
the central part of the procedure.

Focus on the last step: Experiment design for Parameter Precision
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Design of Experiments for Parameter Precision

Overview

We have already determined a parametric model structure:

. n0
Xp41 = &(Xe, ooy Xe—nyy Uty - ooy Up—p,; 67)

Yt = Xt —+ €, €t IId ~ N(O, O'g)

o fixed and perfect process model structure (already determined)
@ system in discrete time, finite-dimensional form
o fixed noise model structure (nonlinear OE)

Already quite strong hypotheses. . .
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Yt = Xt —+ €, €t IId ~ ./\/'(07 O'g)

o fixed and perfect process model structure (already determined)
@ system in discrete time, finite-dimensional form
o fixed noise model structure (nonlinear OE)

Already quite strong hypotheses. . .

Problem: estimation of parameters 6 of the model from experimental data
with maximum precision.
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Parameter Estimation
Well-known results
Collecting an observation sequence of N samples:

Y =o(U,0°) +Ey,  En~N(0,0°ly)

We can define the Fisher Matrix

S’s . oo
F(U,0% = —= cwith S =5
7% lo=60
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Parameter Estimation
Well-known results
Collecting an observation sequence of N samples:

Y = o(U,6°) + Ep, En ~ N(0,0°1y)
We can define the Fisher Matrix

T
5SS , with S= oo

F(U,6°%) =
Any unbiased estimator § of 60 satisfies
Var[f] > F~!

Furthermore, equality is reached (at least asymptotically) by the ML
estimator:

oML — gL5 = arg min V(0),  V(0) =Y - G(U.0)|
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Parameter Estimation
Fisher Matrix

The Fisher Matrix F is thus a measure of the amount of information
contained in the data:

Var[f] ~ F~!

Thus, if F is “large”, F~1is “small”, and the estimated parameter has a
small variance. For this reason, F is also called Information Matrix.
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Parameter Estimation
Fisher Matrix

The Fisher Matrix F is thus a measure of the amount of information
contained in the data:

Var[f] ~ F~!

Thus, if F is “large”, F~1is “small”, and the estimated parameter has a
small variance. For this reason, F is also called Information Matrix.

A well-designed experiment for parameter precision should lead to a big
Fisher Matrix for the assumed model.
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Design of Experiments for Parameter Precision

Overview

The Optimal Experimental Design Problem can be cast into a Dynamic
Optimization Problem (DOP):

U% = arg max f(F(U,8%)

Accordintg to literature, different choices for f(-):
o f = det = D-optimality
e f = mineig = E-optimality
o f = trace = A-optimality

Marco Forgione (TU Delft, DCSC) Design of Experiments 30" Benelux Meeting

7/18



Fisher Matrix Optimization

Static model

Consider the linear static model

yi = 6o + 01u; + e, ue[-1;1]
®(U)

1U1 0

I w| [o N > u 2
Y=|. E .[91]+EN:>F:[ZUI Zu?]’detF_NZ(ui_u)

].UN

Marco Forgione (TU Delft, DCSC) Design of Experiments 30" Benelux Meeting 8 /18



Fisher Matrix Optimization

Static model

Consider the linear static model

yi = 0o + O1u; + e, uel-1;1]

For N even, maximum for - |
N/2 uj in —1, : >

N/2 uj in +1 -1;/ | 1u

Marco Forgione (TU Delft, DCSC) Design of Experiments 30" Benelux Meeting 8 /18



Fisher Matrix Optimization

Static model

Consider the linear static model

yi =00+ O1u; + €, ue[-1;1]
®(U)
0
i Z; fé: N > u 0
Y= Do '[91]+EN:>F:[ZU,- Zuié]’detF:NZ(”i_U)
1 uy

For N even, maximum for - |
N/2 uj in —1, : >
N/2 ujin +1 -1;/ | 1u

Note: awful design for model discrimination!
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Fisher Matrix Optimization

A simple dynamic model

A linear discrete-time FIR, N-length observation.

(V)
¥2 ur  Up 0
Bous + 0 y u u 0
Xt4+1 = UoUt 1Ut—1 3 2 1
" svy=1|"|=|. | [90] +En
Ye =Xt + € :
YN+1 uy uUn-1
Via straightforward computations:
SV o2 s N o N-1 N 2
P : i jui—1 2 2
F= Tk 1_’_ = " ,detF:Zu,--Zu,-— Zu;u;_l
Diz1 Ujlj—1 i=0 Ui =1 = i=1
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Fisher Matrix Optimization

A simple dynamic model cont'd

N N-1 N 2
U° = arg mﬁxdet F= E u,-2 . E u,-2 — E uju;_1
i=1 i=0 i=1

Problem unbounded. We set the constraint |u;| < Umax-
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Fisher Matrix Optimization

A simple dynamic model cont’d

N N-1 N 2
U° = argmaxdet F = E u,-2- E u,-2 — E ujlj_1
U
i=1 i=0 i=1
Problem unbounded. We set the constraint |u;| < Umax-
The maximum (for N even) is reached when
N
‘Ui| = Umax, g uiui—1 =10
i=1
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Fisher Matrix Optimization

A simple dynamic model cont’d

N N-1 N 2
U° = arg mLz;\x det F = E u,-2 . E u,-2 — E uju;_1
i=1 i=0 i=1

Problem unbounded. We set the constraint |u;| < Umax-
The maximum (for N even) is reached when

N
‘Ui‘ = Umax, Z uiui—1 =10 t
i=1

Umax

a Solution is

u=(-1)2

Umax

“Umax U
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Fisher Matrix Optimization

A simple dynamic model cont’d

N N-1 N 2
U° = arg mLz;\x det F = E u,-2 . E u,-2 — E uju;_1
i=1 i=0 i=1

Problem unbounded. We set the constraint |u;| < Umax-
The maximum (for N even) is reached when

N
‘Ui‘ = Umax, Z uiui—1 =10 t
i=1

Umax

a Solution is

u=(-1)2

Umax

“Umax U

Note: The problem has multiple solutions.
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Fisher Matrix Optimization

Numerical solutions

In general, the problem does not admit closed form solution.
Numerical techniques for the solution of the DOP:

DYNAMIC
OPTIMIZATION

DIRECT

INDIRECT DYNAMIC METHODS

METHODS PROGRAMMING
PMP HIB

SHOOTING
METHODS

SIMULTANEOUS

APPROACH

SINGLE
SHOOTING

MULTIPLE

ORTHOGONAL
COLLOCATION
(GPOPS, GAMS)

SHOOTING

(MUSCOD-II,
OPTCON)

(Matiab fmincon)
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Direct methods are the most popular nowadays.
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Fisher Matrix Optimization

First-order LTI example

Xtr1 = &(Xe, ut) = Ooxt + O1u;
Yt =Xt + et
In this case, the lifted system is no more linear in 6:

Y = (U, 0) + En
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_90(U,0) T ad(U, 0)
Y o0
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Fisher Matrix Optimization

First-order LTI example

Xe+1 = &(xt, ur) = boxe + O1u;
Y =Xt et
In this case, the lifted system is no more linear in 6:

Y = (U, 0) + En

. (U, 0) T oo (U, 0)
— = | <
U arg mﬁxdet F, F 50 00 |ui| < Umax
od.

The objective function contains first-order derivatives j:

@ Numerical differentiation

@ Sensitivity equations: s; 1 = 6’351 = agg(;t’”*)st + ag(axlxu‘)

The second approach is prefered (notice that a gradient-based
optimization requires further differentiations in u...)
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Fisher Matrix Optimization

First-order LTI example cont'd
Numerical example
Xe41 = 0.8x¢ + 0.2uy
Implementation in Matlab fmincon using a shooting algorithm:
@ How to parametrize the optimal input?

@ How to initialize the estimate?
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Fisher Matrix Optimization

First-order LTI example cont'd
Numerical example
Xe41 = 0.8x¢ + 0.2uy
Implementation in Matlab fmincon using a shooting algorithm:
@ How to parametrize the optimal input?

@ How to initialize the estimate?

@ Using a general parametrization e.g piecewise linear u, many local
optima depending upon initialization.
Strong parametrization of the input: uj = Upax cos(wei)
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Fisher Matrix Optimization

First-order LTI example cont'd
Numerical example
Xe41 = 0.8x¢ + 0.2uy
Implementation in Matlab fmincon using a shooting algorithm:
@ How to parametrize the optimal input?

@ How to initialize the estimate?

@ Using a general parametrization e.g piecewise linear u, many local
optima depending upon initialization.
Strong parametrization of the input: uj = Upax cos(wei)

e For large N, we find w. ~ 0.13. Same convergence starting from
different point. Sensible, the bandwidth of the system is = 0.2.

@ Possible extension to multisine excitation.
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Fisher Matrix Optimization

First-order LTI example cont'd
Numerical example
Xe41 = 0.8x¢ + 0.2uy
Implementation in Matlab fmincon using a shooting algorithm:
@ How to parametrize the optimal input?

@ How to initialize the estimate?

@ Using a general parametrization e.g piecewise linear u, many local
optima depending upon initialization.
Strong parametrization of the input: uj = Upax cos(wei)

e For large N, we find w. ~ 0.13. Same convergence starting from
different point. Sensible, the bandwidth of the system is = 0.2.

@ Possible extension to multisine excitation.

@ Using the sinusoidal as starting point with piecewise linear
parametrization, we get a square wave of the same frequency.
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Fisher Matrix Optimization

Process model example: batch crystallization

nonlinear dynamics

with

— g
dmy _ G = kgS
dt B = kpSPms
dm; :
TJZIij—ﬁBr{),;‘:l,z,s S=C-CY(T)

t
.

dc 5 0 = [g, log kg, b, log kp]
I = —3pcky — pckyBry

ye = i(ma), €17
Temperature T is constrained to
initial and final value, cooling rate is
also limited. D-optimal design:
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Fisher Matrix Optimization

Process model example: batch crystallization

nonlinear dynamics

—L = jemi_y + B, j=1,2,3

— = —3pcky — pckyBrg

Temperature T is constrained to
initial and final value, cooling rate is
also limited. D-optimal design:

Approx 1 order of magnitude more
accurate w.r.t. linear cooling.

Marco Forgione (TU Delft, DCSC)

Design of Experiments

with
G = kgS®
B = kySPm;
S=C—C*(T)
0 = [g,log kg, b, log kb]T
e = [I(mp), €17

temperature (°C)
» ) s g

3

CRCIC)
time (minutes)
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Fisher Matrix Optimization

Considerations

The problem formulation is rather straightforward, but optimization
problem is in general hampered by the large number of local optima.
Additional constraints might make the problem easier (many local optima
are a-priori excluded).

Many examples from the process field are per se strongly constrained.
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Fisher Matrix Optimization

Considerations

The problem formulation is rather straightforward, but optimization
problem is in general hampered by the large number of local optima.

Additional constraints might make the problem easier (many local optima
are a-priori excluded).

Many examples from the process field are per se strongly constrained.

When the system is not linear in the parameters, the optimal design
depends on the parameters. But this is what we want to estimate!

o lterative procedure of design and identification
@ Robust optimal experiment design, e.g. max-min

Ue = inf(F
arg max min (F)

(additional numerical burden)
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Fisher Matrix Optimization

Considerations cont'd

In general, models are used for some task (simulation, prediction,
optimization, ...); the focus is not on parameter precision.
If we could define the performance objective as quadratic function:

n=©0-0)TA®0-06°

then:
E[n] = tr AVar[d] (for 6° gaussian)

Marco Forgione (TU Delft, DCSC) Design of Experiments 30" Benelux Meeting

16 / 18



Fisher Matrix Optimization

Considerations cont'd

In general, models are used for some task (simulation, prediction,
optimization, ...); the focus is not on parameter precision.
If we could define the performance objective as quadratic function:

n=(0-6°)TA@B - 6°)
then:
E[n] = tr AVar[d] (for 6° gaussian)

One might use E[n] as objective function for optimization.
A similar approach is the so-called Da-optimal criterion:

_ : 1T
UBA—argm&ndetAF A

For a non-quadratic performance objective, a Taylor expansion is
straightforward.

However, one may argue about the accuracy of the approximation

Marco Forgione (TU Delft, DCSC) Design of Experiments 30" Benelux Meeting

16 / 18



Conclusions

In principle, optimization of the Fisher Matrix gives the most informative
experiment, given an experimental framework. Open problems

Theoretical

@ Strong assumptions on the
model and the noise. Exact
structure is known. Under
modelling?

@ Focus on parameter precision:

difficult translation to model
performance

Practical
@ Non-convex, nonlinear
optimization. Problem of local
optima
@ Lack of software off-the-shelf.

Time waste, scarse
reproducibility of the results
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In principle, optimization of the Fisher Matrix gives the most informative
experiment, given an experimental framework. Open problems

Theoretical )
Practical

@ Strong assumptions on the
model and the noise. Exact
structure is known. Under
modelling?

@ Non-convex, nonlinear
optimization. Problem of local
optima

@ Lack of software off-the-shelf.
Time waste, scarse
reproducibility of the results

@ Focus on parameter precision:
difficult translation to model
performance

In practice, model-based experiment design techniques are not (yet)

broadly applied.
The problems requires more attention from the control community.

Only discrete-time LTl models are well covered.
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Thank you for your attention
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