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Introduction

Scope of the work: fast data-driven development of mathematical models.
Particular focus on process models

medium- or large-scale models

may be intrinsically non-linear
(e.g. batch)

severe structural and parametric
uncertainties

slow dynamics (time for advanced
control available)

Example: batch cooling crystallization.
Important separation and purification
process in chemical and pharmaceutical
sector
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Figure 1.1: Reactor H4RES12 at MSD Apeldoorn

Figure 1.2: SKID
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Introduction
Model building procedure

A rigorous procedure to develop a model from both data and knowledge.
According to
G.Franceschini, S. Macchietto
Model-based design of experiments for parameter precision: State of the art
Chemical Engineering Science, Elvisier 2008

G. Franceschini, S. Macchietto / Chemical Engineering Science 63 (2008) 4846–4872 4847

Fig. 1. Model validation procedure based on model-based experiment design techniques.

information from an experimental apparatus being modelled by
devising experiments that will yield the most informative data,
in a statistical sense, for use in parameter estimation and model
validation. Before collecting the data, an experiment is therefore
designed, i.e. it is decided how the system will be perturbed
(initial conditions, which input variables are modified, when
and how, etc.) and where, how and when the experimenter will
observe the phenomena under investigation (which variables
are measured, type and location of sensors, sampling schedules,
etc.) (Walter and Pronzato, 1990).

Several experiment design techniques for model validation
have been developed in the past and applied successfully to a
wide range of systems. Fig. 1 illustrates the three main steps
in a model validation procedure which employs model-based
experiment design techniques. After one or more mathemati-
cal models have been proposed as candidates to describe the
system under study, some preliminary tests may be carried out
to investigate whether it is at all possible in principle to ob-
tain information about the model from the prospective experi-
mental data (if not, alternative models or experiments must be
selected) (see Section 3.1). Some experiments may then be de-
signed and performed in order to discriminate between the rival
models which passed the preliminary tests (see Section 3.2).
After the inadequate models have been rejected, a surviving
model may undergo another experiment design study in order
to improve the precision of its parameters (see Section 4). In
each of these stages, if poor results are obtained, the various
steps are repeated until a validated model is achieved. In prin-
ciple, parameter estimation and model discrimination may also
be alternated.

This paper is focused on the last step of this validation pro-
cedure, the so-called model-based DOE for parameter preci-
sion, and aims at presenting an up-to-date review of the state
of the art in this field. The paper is structured as follows: first,
the main experiment design techniques are introduced, together
with the key elements of a model identification procedure. For
completeness, the major steps of the model-building strategy
illustrated in Fig. 1 (preliminary checks and model discrimi-
nation) are also but only briefly described. Then a detailed re-
view and critical analysis of model-based experiment design
for parameter precision are presented. The main contributions
to model-based experiment design procedures in terms of novel
objective functions, formulations and numerical implementa-
tions are highlighted. Finally, a list of the most recent appli-
cations of these techniques in various fields (from chemical
kinetics to biological modelling) and an overview of possible
future developments for model-based experiment design con-
clude this work.

1.1. Black-box, model-based and incremental approaches

Experiments followed by analysis of the collected data are
frequently performed to measure the effects of one or more
important factors on a response. For this purpose, a good ex-
periment design is essential: when experiments are badly de-
signed, even the more sophisticated data analysis techniques
can fail to extract useful information from the data collected.
The importance of designing a priori an experiment that can
provide good information with minimum effort was understood
very early in the scientific community. The first ideas of DOE
were introduced by Fisher (1935), who described the basic
problem of experiment design as deciding what pattern of fac-
tors combination (the design points) will best reveal the prop-
erties of the response and how this response is influenced by
the factors. This type of DOE views an experiment as sim-
ply connecting inputs (factors) and outputs (responses) and is
therefore called “black-box experiment design”. Its aim is to
select the combinations of factor values to be employed that
will provide the most information on the input–output rela-
tionship in the presence of variation (for a recent application
see Chen and Wang, 2004). Many classical design methods
were presented in numerous publications and reference is made
to the books of Box et al. (1978), Box and Draper (1987)
and Atkinson and Donev (1992) as authoritative texts on the
subject.

The main class of statistical design techniques of this type
is the so-called factorial methods. Such designs are straight-
forward to implement and their results can be very easily in-
terpreted; these methods are created to measure the additive
effects on a response for each of the input factors. In addition,
the effects of interactions between factors can also be inves-
tigated. In case of a large number of factors, the experimen-
tal cost required is very high since all possible combinations
of factor values must be taken into consideration. Usually in
this case, fractional factorial designs can be used to reduce the
size of the design matrix (Box et al., 1978). These factorial
methods are not suited to the situation where there are some
constraints on the outputs (or internal states of the experiment
such as temperatures, pressures, etc.). They are also not well
suited to handle dynamic experiments, where both “factors”
and “responses” may not be single values (say, a constant tem-
perature, a conversion) but complex time profiles of the same
variables. However, in view of their simplicity these methods
are still widely used in the DOE, particularly in the biologi-
cal area (see, for example, the recent publications of Swinnen
et al., 2005; Valdramidis et al., 2006), but will not be discussed
any further here.

Figure: Model development procedure

Only the first step requires physical insight, the following steps constitue
the central part of the procedure.
Focus on the last step: Experiment design for Parameter Precision
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Design of Experiments for Parameter Precision
Overview

We have already determined a parametric model structure:

xk+1 = g(xt , . . . , xt−na , ut , . . . , ut−nb
; θ0)

yt = xt + et , et iid ∼ N (0, σ2
e )

fixed and perfect process model structure (already determined)

system in discrete time, finite-dimensional form

fixed noise model structure (nonlinear OE)

Already quite strong hypotheses. . .

Problem: estimation of parameters θ of the model from experimental data
with maximum precision.
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Parameter Estimation
Well-known results

Collecting an observation sequence of N samples:

Y = Φ(U, θ0) + EN , EN ∼ N (0, σ2IN)

We can define the Fisher Matrix

F (U, θ0) =
STS

σ2

∣∣∣∣
θ=θ0

, with S =
∂Φ

∂θ

Any unbiased estimator θ̂ of θ0 satisfies

Var[θ̂] ≥ F−1

Furthermore, equality is reached (at least asymptotically) by the ML
estimator:

θML = θLS = arg min
θ

V (θ), V (θ) = ‖Y − G (U, θ)‖2
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Parameter Estimation
Fisher Matrix

The Fisher Matrix F is thus a measure of the amount of information
contained in the data:

Var[θ̂] ≈ F−1

Thus, if F is “large”, F−1 is “small”, and the estimated parameter has a
small variance. For this reason, F is also called Information Matrix.

A well-designed experiment for parameter precision should lead to a big
Fisher Matrix for the assumed model.
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Design of Experiments for Parameter Precision
Overview

The Optimal Experimental Design Problem can be cast into a Dynamic
Optimization Problem (DOP):

U0 = arg max
U

f (F (U, θ0))

Accordintg to literature, different choices for f (·):

f = det ⇒ D-optimality

f = min eig ⇒ E-optimality

f = trace ⇒ A-optimality

. . .
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Fisher Matrix Optimization
Static model

Consider the linear static model

yi = θ0 + θ1ui + ei , u ∈ [−1; 1]

Y =

Φ(U)︷ ︸︸ ︷
1 u1

1 u2
...

...
1 uN

 ·
θ︷︸︸︷[
θ0

θ1

]
+EN ⇒ F =

[
N

∑
ui∑

ui
∑

u2
i

]
, det F = N

∑
(ui − u)2

For N even, maximum for
N/2 ui in −1,
N/2 ui in +1

Note: awful design for model discrimination!
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Fisher Matrix Optimization
A simple dynamic model

A linear discrete-time FIR, N-length observation.

xt+1 = θ0ut + θ1ut−1

yt = xt + et
⇒ Y =


y2

y3
...

yN+1

 =

Φ(U)︷ ︸︸ ︷
u1 u0

u2 u1
...

...
uN uN−1

 ·
θ︷︸︸︷[
θ0

θ1

]
+EN

Via straightforward computations:

F =

[ ∑N
i=1 u2

i

∑N
i=1 uiui−1∑N

i=1 uiui−1
∑N−1

i=0 u2
i

]
, det F =

N∑
i=1

u2
i ·

N−1∑
i=0

u2
i −

(
N∑

i=1

uiui−1

)2
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Fisher Matrix Optimization
A simple dynamic model cont’d

Uo = arg max
U

det F =
N∑

i=1

u2
i ·

N−1∑
i=0

u2
i −

(
N∑

i=1

uiui−1

)2

Problem unbounded. We set the constraint |ui | ≤ umax .
The maximum (for N even) is reached when

|ui | = umax ,

N∑
i=1

uiui−1 = 0

a Solution is

u = (−1)b
n
2
cumax

Note: The problem has multiple solutions.
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Fisher Matrix Optimization
Numerical solutions

In general, the problem does not admit closed form solution.
Numerical techniques for the solution of the DOP:

DYNAMIC 
OPTIMIZATION

INDIRECT 
METHODS

PMP

DIRECT 
METHODS

SIMULTANEOUS
APPROACH

SHOOTING 
METHODS

MULTIPLE 
SHOOTING

(MUSCOD-II, 
OPTCON)

SINGLE 
SHOOTING

(Matlab fmincon)

ORTHOGONAL 
COLLOCATION

(GPOPS, GAMS)

DYNAMIC 
PROGRAMMING

HJB

Direct methods are the most popular nowadays.
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Fisher Matrix Optimization
First-order LTI example

xt+1 = g(xt , ut) = θ0xt + θ1ut

yt = xt + et

In this case, the lifted system is no more linear in θ:

Y = Φ(U, θ) + EN

Uo = arg max
U

det F , F =
∂Φ(U, θ)

∂θ

T ∂Φ(U, θ)

∂θ
, |ui | ≤ umax

The objective function contains first-order derivatives ∂Φ
∂θ :

Numerical differentiation

Sensitivity equations: st+1 = ∂xt+1

∂θ = ∂g(xt ,ut)
∂xt

st + ∂g(xt ,ut)
∂ut

The second approach is prefered (notice that a gradient-based
optimization requires further differentiations in u. . . )
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Fisher Matrix Optimization
First-order LTI example cont’d

Numerical example
xt+1 = 0.8xt + 0.2ut

Implementation in Matlab fmincon using a shooting algorithm:

1 How to parametrize the optimal input?

2 How to initialize the estimate?

Using a general parametrization e.g piecewise linear u, many local
optima depending upon initialization.
Strong parametrization of the input: ui = umax cos(ωc i)

For large N, we find ωc ≈ 0.13. Same convergence starting from
different point. Sensible, the bandwidth of the system is ≈ 0.2.

Possible extension to multisine excitation.

Using the sinusoidal as starting point with piecewise linear
parametrization, we get a square wave of the same frequency.
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Numerical example
xt+1 = 0.8xt + 0.2ut

Implementation in Matlab fmincon using a shooting algorithm:

1 How to parametrize the optimal input?

2 How to initialize the estimate?

Using a general parametrization e.g piecewise linear u, many local
optima depending upon initialization.
Strong parametrization of the input: ui = umax cos(ωc i)

For large N, we find ωc ≈ 0.13. Same convergence starting from
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Fisher Matrix Optimization
Process model example: batch crystallization

nonlinear dynamics

dm0

dt
= B

dmj

dt
= jGmj−1 + Br

j
0, j = 1, 2, 3

dC

dt
= −3ρckv − ρckv Br3

0

with

G = kg Sg

B = kbSbm3

S = C − C∗(T )

θ = [g, log kg , b, log kb ]T

yt = [I (m2), C ]T

Temperature T is constrained to
initial and final value, cooling rate is
also limited. D-optimal design:

Approx 1 order of magnitude more
accurate w.r.t. linear cooling.
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Fig. 3. Temperature profile for optimal experimental design: step
Ž . Ž . Ž . Ž .1 — , step 2 - - - , step 3 -P - , and step 4 PPP .

respectively. The parameters to be estimated are u T

w x Ž . Ž .s g,k ,b,k defined in Eqs. 2 and 3 .g b
Table 1 lists the properties of the KNO –H O3 2

batch cooling crystallizer used in this study. All vari-
ables are defined in Sections 2–4. The nucleation and
growth parameters b†, k† , g†, k† were obtainedb g

w xthrough a thorough experimental study 14 , and these
are treated as the true values for this study. The mo-
ment equations were integrated for a production run

w xof 160 min using Gear’s stiff method 15 . The cool-
Ž .ing profile T t was parameterized by a linear spline

w x16 to reduce the infinite dimensional nonlinear pro-
gram to a finite dimensional nonlinear program,
which was solved using successive quadratic pro-

w xgramming 17 . The software implementing the algo-
rithms has been made available to the crystallization

w xcommunity via the web 18 .
For sequential optimal model-based experimental

design, the initial design is based on setting the ki-
netic parameters equal to the midpoint of the range

w x Žof possible values as given in 3 gs1.5, ln k s5,g
.bs 2, and ln k s 10 . The obtained experimen-b

tal data are then used to improve the parameter

estimates, and to design the next experiment. The
procedure was repeated until the relative error in each
kinetic parameter was less than 2%. Each set of pa-
rameter estimates is listed in Table 2 with estimates
obtained by linear and natural cooling. The obtained
temperature profile and the seed distribution for the
model-based experimental design are given in Fig. 3
and Table 3, respectively.
Table 2 shows that the parameter estimates ob-

tained by the model-based design procedure for a
single experimental run are more accurate than for
four experimental runs using natural cooling or lin-
ear cooling. Comparing the designs where four ex-
perimental runs are used, the parameter estimates ob-
tained by the model-based experimental design pro-
cedure are approximately an order of magnitude more
accurate than for the other designs. Better parameter
estimates were obtained by linear cooling than natu-
ral cooling.
Fig. 3 and Table 3 indicate that the supersatura-

tion profile and the mean seed size for the optimal
experimental design can change substantially from
one iteration to the next. For each experiment, the
temperature profile is at its maximum or minimum
rate constraint during most of the run. The maximum
rate constraint can occur at the beginning, middle,
andror end of the run. As shown in Table 3, the seed
mass is small for all optimal experimental designs.
Reducing the amount of initial seed causes the super-
saturation to be larger throughout the experiment,
providing better signal-to-noise ratios for determin-

Ž Ž . Ž ..ing parameter values see Eqs. 2 and 3 . This is in
sharp contrast to which seed characteristics are desir-
able for optimal control of product crystal properties
w x19 in which large seed masses are used to promote
growth over nucleation.

< y1 <Recall from Section 3 that V is inversely pro-u

portional to the volume of the hyperellipsoid defin-

Table 3
Optimal seed distribution for sequential optimal experiment de-

w xsigns. A seed distribution similar to Miller’s 14 was used for the
linear and natural cooling profiles

Ž . Ž .m g L mm Wseed 0

Miller’s 230 196 0.612
MBED steps 1–3 5.0 600 0.95
MBED step 4 5.0 142 0.95
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Fisher Matrix Optimization
Considerations

The problem formulation is rather straightforward, but optimization
problem is in general hampered by the large number of local optima.
Additional constraints might make the problem easier (many local optima
are a-priori excluded).
Many examples from the process field are per se strongly constrained.

When the system is not linear in the parameters, the optimal design
depends on the parameters. But this is what we want to estimate!

Iterative procedure of design and identification

Robust optimal experiment design, e.g. max-min

Uo = arg max
U

min
θ∈Θ

f (F )

(additional numerical burden)
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Fisher Matrix Optimization
Considerations cont’d

In general, models are used for some task (simulation, prediction,
optimization, . . . ); the focus is not on parameter precision.
If we could define the performance objective as quadratic function:

η = (θ̂ − θ0)TA(θ̂ − θ0)

then:
E [η] = tr A Var[θ̂] (for θ0 gaussian)

One might use E [η] as objective function for optimization.
A similar approach is the so-called DA-optimal criterion:

Uo
DA

= arg min
U

det AF−1AT

For a non-quadratic performance objective, a Taylor expansion is
straightforward.
However, one may argue about the accuracy of the approximation
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Conclusions

In principle, optimization of the Fisher Matrix gives the most informative
experiment, given an experimental framework. Open problems

Theoretical

Strong assumptions on the
model and the noise. Exact
structure is known. Under
modelling?

Focus on parameter precision:
difficult translation to model
performance

Practical

Non-convex, nonlinear
optimization. Problem of local
optima

Lack of software off-the-shelf.
Time waste, scarse
reproducibility of the results

In practice, model-based experiment design techniques are not (yet)
broadly applied.
The problems requires more attention from the control community.
Only discrete-time LTI models are well covered.
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Thank you for your attention
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