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Overview

We combine ideas from Identification for Control and the tools for
Experiment Design in order to develop and actively adaptive control
algorithm.

“A model-based controller is progressively improved using closed-loop
system identification. Excitation is provided to the system when this is
convenient.”
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Identification for Control

System running in closed loop, but the control performance is not optimal.

“Improve the control performance while limiting the excitation cost.”

An identification experiment followed by the “normal operation”

Control performance V depends on the parameter covariance P .

The parameter covariance P depends on the excitation signal r.

Excitation cost E depends on excitation signal r.

A trade-off between the excitation cost E and the control performance V.
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Experiment Design
For LTI systems

The covariance P is a nonlinear, nonconvex function of the excitation
signal (time domain).
The information matrix F = P−1 is a linear function of the excitation
power spectrum (frequency domain).

Input design in the frequency domain using a two-step procedure:
1 Determine an optimal spectrum Φr(ω) (convex optimization).
2 Find a signal r(t) with spectrum Φr(ω) (stochastic realization).
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Itendification for Control
Classical: “Given a maximum allowed perturbation, find the excitation
signal that gives the best control performance.”

maxV such that E ≤ Ē .
M. Gevers and L.Ljung.
Optimal experiment designs with respect to the intended model application.
Automatica, 22(5):543-554, 1986

Least costly: “Given a minimum allowed performance level, find the
excitation signal that minimizes the perturbation.”

min E such that V ≥ V̄.
X.Bombois, G.Scorletti, M.Gevers, P.M.J. Van den Hof and R.Hildebrand.
Least costly identification experiment for control.
Automatica, 42(10):1651-1662, 2006

Limitations:

Two distinct phases: identification and normal operation.

V and E considered separately.

“Can we design experiments in such a way that the overall performance is
optimized during the whole time of operation?”
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M. Gevers and L.Ljung.
Optimal experiment designs with respect to the intended model application.
Automatica, 22(5):543-554, 1986

Least costly: “Given a minimum allowed performance level, find the
excitation signal that minimizes the perturbation.”

min E such that V ≥ V̄.
X.Bombois, G.Scorletti, M.Gevers, P.M.J. Van den Hof and R.Hildebrand.
Least costly identification experiment for control.
Automatica, 42(10):1651-1662, 2006

Limitations:

Two distinct phases: identification and normal operation.

V and E considered separately.

“Can we design experiments in such a way that the overall performance is
optimized during the whole time of operation?”

Marco Forgione (TUD) Experiment Design Benelux Meeting 2013 5 / 21



Itendification for Control
Classical: “Given a maximum allowed perturbation, find the excitation
signal that gives the best control performance.”

maxV such that E ≤ Ē .
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The Framework

Linear system operated in closed-loop over n consecutive batches.

Before a batch, identification
and controller re-design.

Excitation signal rk in each
batch.
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Excitation rk has a dual effect. Worsens performance during the batch k,
but can improve performance for batch k + 1.

“Design the signals rk to optimize the performance over n batches.”
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The Framework

● θ1 available 
● design C1
● design r1
● execute batch 1

batch 1 batch 2 batch k batch k+1... ... batch n

● Y1, U1 available
● identify θ2
● design C2
● design r2
● execute batch 2

● Yk-1, Uk-1 available
● identify θk
● design Ck
● design rk
● execute batch k

● Yk, Uk available
● identify θK+1
● design Ck+1
● design rk+1
● execute batch k+1

● Zn-1 available
● identify θn
● design Cn
● execute batch n

Steps:

Identification

Controller design

Experiment design

Execute batch k

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1

It is an actively adaptive learning control algorithm.
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Iterative Identification

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1
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Iterative Identification

When the batch k is executed

Data (Yk, Uk) are collected.

Previous estimate θ̂k ∼ N (θo, R
−1
k ) is available.

The updated parameter estimate θ̂k+1 is computed as

θ̂k+1 = arg min
θ

1

σ2
e

∥∥∥Yk − Ŷ (Uk, θ)
∥∥∥2

2
+
∥∥∥θ − θ̂k∥∥∥2

Rk

.

The parameter θ̂k+1 ∼ N (θo, R
−1
k+1) with Rk+1 = Rk + Fk.

Information Matrix and excitation spectrum

The information matrix Fk is a linear function of the spectrum Φr(ω).
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Controller Design

ITERATIVE 
IDENTIFICATION

CONTROLLER
DESIGN

EXPERIMENT 
DESIGN

EXECUTE 
BATCH k

START
k=1

STOPk=n?

k = k+1

Here we use an H2 criterion. Different choices of C(θ̂k) possible. . .
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Experiment Design
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Experiment Design
Overview

Let us define:
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Experiment Design
Objective

Define the total cost for a batch as

Tk ,
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Excitation signals rk are designed in order to

minimize
∑n

k=1 Tk.

satisfy constraints Tk ≤ T̄k for each batch.
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Experiment Design
Total Cost, Application Cost & Excitation Cost

Total Cost: power of output difference between the two loops:

Tk , E[(yol,ek − yel,erk )2].
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Since rk ⊥ ek:
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Since rk ⊥ ek:

Total Cost Tk︷ ︸︸ ︷
E[(yol,ek − yel,erk )2] =

Control Cost Vk︷ ︸︸ ︷
E[(yol,ek − yel,ek )2] +

Excitation Cost Ek︷ ︸︸ ︷
E[(yel,rk )2] .
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Experiment Design
Objective

Experiment Design Problem (for k = 1):
minimize the summation of the total cost over the future n batches

min

n∑
k=1

Tk subject to

Tk ≤ T̄k, k = 1, 2, . . . , n.

Optimization variables: (spectra of) excitation signals r1, r2, . . . , rn.

Tk = Vk + Ek random variables ⇒ minimization in a worst-case sense.

Approximations required to compute T wc
k = Vwc

k + Ewc
k . . .

Leads to a convex SDP optimization (LMIs with linear objective)
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Experiment Design
Chicken and the egg approximation

We will need to evaluate Vwc
k , Ewc

k for k = 1, . . . , n before the execution of
the first batch.

For the Control Cost

Vwc
k = min

λk

1

λk
s.t Rk(θo, θ̂k, . . . , θ̂2, θ̂1) ≥ λk

V ′′(θ̂k)χ
2
α(n)

2
.

For the Excitation Cost

Ewc
k = max

s
Ek(θ̃s, θ̂k).

Quantities in red are not known!
Typical chicken & the egg issue of Experiment Design.
They are all replaced with θ̂1.

In order to alleviate the chicken & the egg issue, the Experiment Design is
implemented in Receding Horizon over the batches.
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Experiment Design
Receding Horizon Implementation

● θ1 available 
● design C1
● design Ф1,Ф2,..,Фn 
● apply C1, r1

batch 1 batch 2 batch k batch k+1... ... batch n

● Y1, U1 available
● identify θ2
● design C2
● design Ф2,Ф3,…,Фn
● apply C2, r2

● Yk-1, Uk-1 available
● identify θk
● design Ck
● design Фk,Фk+1,…,Фn
● apply Ck, rk

● Yk, Uk available
● identify θK+1
● design Ck+1
● design Фk+1,Фk+2,…,Фn
● apply Ck+1, rk+1

● Zn-1 available
● identify θn
● Cn designed
● apply Cn

1 ED(1) for batch 1 based on θ̂1. Spectra (Φ1, . . . ,Φn) found.
r1 applied in batch 1. Batch 1 executed, data (Y1, U1) collected.

2 Parameter θ̂2 identified from the data. ED(2) for batch 2 based on
θ̂2. New spectra (Φ2, . . . ,Φn) found. Signal r2 applied in batch 2.
Batch 2 executed, data (Y2, U2) collected.

3 . . .
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Numerical Simulation

Second-order system So in a BJ model structure.

N = 2400 total samples.

n = 12 batches of length 200.

Constraints:
I Tk ≤ 0.7 for k = 1, . . . , 6.
I Tk ≤ 0.05 for k = 7, . . . , 12.
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Numerical Simulation
Excitation Spectra

Excitation Spectra k = 1
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Numerical Simulation
Total cost

Total cost
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G(θ̂1)
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Numerical Simulation
Total cost

n=12 batches
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n=2 batches

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

time

 

 

T̄k

T
wc,RH
k

Tk

n = 2 corresponds to a least costly identification.
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Conclusions

An actively adaptive control algorithm based on Experiment Design tools.

Optimization of the overall performance.

No distinction between identification and control batches.

Excitation only when it pays back.

Some open issues:

Approximations to compute the worst-case. Analysis?

Batch systems are often nonlinear.

Initial conditions plays a significative role.

On-going work for nonlinear experiment design.
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Thank you.
Questions?
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Experiment Design
Worst-case control cost

From Parseval relation Vk = E[(yol,ek − yel,ek )2] =

Vk(θo, θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ 1

1 + C(θ̂k)G(θo)
− 1

1 + C(θo)G(θo)

∣∣∣∣∣
2

|H|2 (θo)σ
2
e dω

We approximate Vk(θo, θ̂k) as a quadratic function of θo locally
around θ̂k

Vk(θo, θ̂k) ≈
1

2
(θo − θ̂k)>V ′′(θ̂k)(θo − θ̂k).

Since θo − θ̂k ∼ N (0, R−1
k ), using standard ellipsoids we can find the

worst-case Vk with probability α as

Vwc
k = min

λk

1

λk
s.t Rk(Φ1,Φ2, . . . ,Φk−1) ≥ λk

V ′′χ2
α(n)

2
.

Rk(Φ1,Φ2, . . . ,Φk−1) linear ⇒ convex optimization!
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Experiment Design
Worst-case excitation cost

The excitation cost

Ek(θo, θ̂k) =
1

2π

∫ π

−π

∣∣∣∣∣ G(θo)

1 + C(θ̂k)G(θo)

∣∣∣∣∣
2

Φr
k(ω) dω.

depends on the decision variables!

Solution based on Randomized Algorithms. . .
Using the initial estimate θ̂1 ∼ N (θo, R

−1
1 ) :

1 Draw q samples θ̃s.

2 Compute Ek,s = Ek(θ̃s, θk) for s = 1, . . . , q.

3 Extract the empirical maximum Ewc
k = maxs Ek,s.

The number of samples q can be tuned such that Ewc
k is the Worst Case

Excitation Cost with probability α (randomized algorithms).
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