Iterative Learning Control of Supersaturation in Batch Cooling Crystallization

Marco Forgione¹, Ali Mesbah¹, Xavier Bombois¹, Paul Van den Hof²

¹Delft University of Technology Delft Center for Systems and Control

²Eindhoven University of Technology Delft Center for Systems and Control

American Control Conference 2012 28 June 2012, Montréal Outline

- Iterative Learning Control
- 3 Simulation Results

Marco Forgione (TU Delft)

(3)

Outline

Batch Crystallization

- 2 Iterative Learning Control
- 3 Simulation Results

4 Conclusions

→ 3 → 4 3

ም.

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

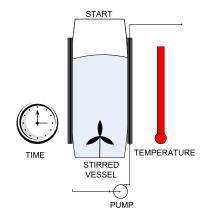
- Hot solution fed into the vessel.
- Cool to seeding temperature.
- Introduce seeds.
- Cool to final temperature.
 - Crystal growth (and nucleation).

A B A A B A

Remove final product.

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

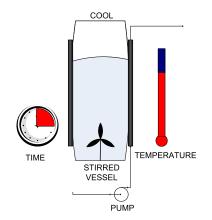


- It is the solution fed into the vessel.
- ② Cool to seeding temperature.
- Introduce seeds.
- Cool to final temperature. Crystal growth (and nucleation).
- 3 Remove final product.

3 🕨 🖌 3

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

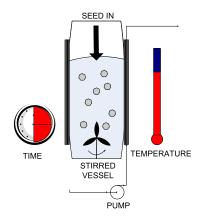


- Hot solution fed into the vessel.
- Ocol to seeding temperature.
- Introduce seeds.
- Cool to final temperature. Crystal growth (and nucleation).
- Semove final product.

3 🕨 🖌 3

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.



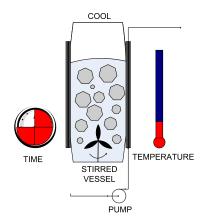
- Hot solution fed into the vessel.
- Ocol to seeding temperature.
- Introduce seeds.
 - Cool to final temperature. Crystal growth (and nucleation).

3 🕨 🖌 3

S Remove final product.

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

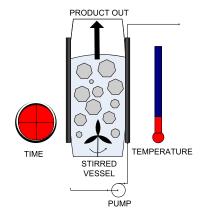


- Intersection of the second second
- 2 Cool to seeding temperature.
- Introduce seeds.
- Cool to final temperature.
 Crystal growth (and nucleation).
- Remove final product.

3 🕨 🖌 3

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

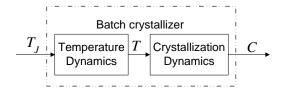


- Hot solution fed into the vessel.
- 2 Cool to seeding temperature.
- Introduce seeds.
- Cool to final temperature. Crystal growth (and nucleation).
- Semove final product.

Modeling

Process (after seeding) described by

- Temperature Dynamics (linear, known or easy to estimate)
- Crystallization Dynamics (nonlinear PDE, parametric + structural uncertainties possible)

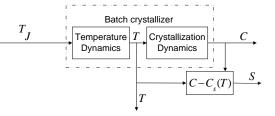


Input

- Jacket temperature T_J
- Measured Output
 - Vessel Temperature T
 - Concentration C
- Control Output
 - Supersaturation $S = C C_s(T)$

Disturbances

- Low frequency disturbance on the input
- White measurement noise on the outputs

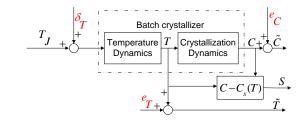


ACC 2012 6 / 21

Input

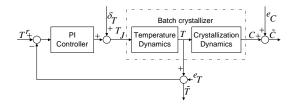
- Jacket temperature T_J
- Measured Output
 - Vessel Temperature T
 - Concentration C
- Control Output
 - Supersaturation $S = C - C_s(T)$

- Low frequency disturbance on the input
- White measurement noise on the outputs



Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.

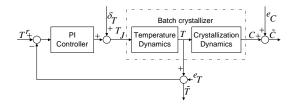


Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.

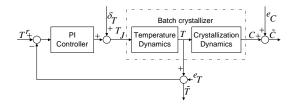


Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.



Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.

Outline

2 Iterative Learning Control

3 Simulation Results

4 Conclusions

Marco Forgione (TU Delft)

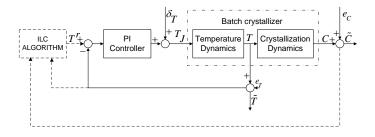
イロト イヨト イヨト イヨト

Iterative Learning Control

Control Scheme

ILC control strategy. \mathbf{T}_{k}^{r} updated from batch to batch.

- Can use measurements available at the end of the batch.
- Built on top of the standard industrial T control.



• Objective for batch k: tracking of supersaturation profile $\overline{\mathbf{S}}_k$

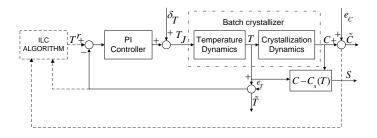
Marco Forgione (TU Delft)

Iterative Learning Control

Control Scheme

ILC control strategy. \mathbf{T}_{k}^{r} updated from batch to batch.

- Can use measurements available at the end of the batch.
- Built on top of the standard industrial T control.



• Objective for batch k: tracking of supersaturation profile $\overline{\mathbf{S}}_k$.

Iterative Learning Control General Idea

Based on an additive correction of a nominal model from \mathbf{T}^r to \mathbf{S} .

$$\hat{S}(\mathbf{T}^r)$$
 nominal model
 $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k$ corrected model

Note:

• $\mathbf{T}^r, \boldsymbol{\alpha}$ vectors of samples $\in \mathbb{R}^N$ (N = batch length)

lpha can compensate the nominal model for

- model mismatch (along a particular trajectory)
- effect of repetitive disturbances

Iterative Learning Control General Idea

Based on an additive correction of a nominal model from \mathbf{T}^r to \mathbf{S} .

$$\hat{S}(\mathbf{T}^r)$$
 nominal model
 $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k$ corrected model

Note:

• $\mathbf{T}^r, \boldsymbol{\alpha}$ vectors of samples $\in \mathbb{R}^N$ ($N = \mathsf{batch} \mathsf{ length}$)

 α can compensate the nominal model for

- model mismatch (along a particular trajectory)
- effect of repetitive disturbances

Iterative Learning Control

Correction vector

How to obtain the correction vector?

• In principle, "match" the last measurement.

$$oldsymbol{lpha}_k = ilde{oldsymbol{\mathsf{S}}}_k - \hat{S}(oldsymbol{\mathsf{T}}^r) \qquad = \qquad$$
model error

Due to disturbances on $\tilde{\mathbf{S}}_k$, might not be a good solution.

• Take into account the deviation from α_{k-1} .

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^N} \|\tilde{\mathbf{S}}_k - (\hat{S}(\mathbf{T}^r) + \alpha)\|_{Q_\alpha}^2 + \|\alpha - \alpha_{k-1}\|_{S_\alpha}^2$$

Iterative Learning Control

Correction vector

How to obtain the correction vector?

• In principle, "match" the last measurement.

$$oldsymbol{lpha}_k = ilde{oldsymbol{\mathsf{S}}}_k - \hat{S}(oldsymbol{\mathsf{T}}^r) \qquad = \qquad \mathsf{model \ error}$$

Due to disturbances on $\tilde{\mathbf{S}}_k$, might not be a good solution.

• Take into account the deviation from α_{k-1} .

$$\boldsymbol{\alpha}_k = \arg\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \|\mathbf{\tilde{S}}_k - (\hat{S}(\mathbf{T}^r) + \boldsymbol{\alpha})\|_{Q_\alpha}^2 + \|\boldsymbol{\alpha} - \boldsymbol{\alpha}_{k-1}\|_{S_\alpha}^2$$

Iterative Learning Control Algorithm

Steps of the ILC algorithm. At each batch k:

- T^r_k is set as the input to the PI controller, the batch is executed.
 Š^k_k is estimated from measurements.
- Output An additive correction of the nominal model is performed: $\hat{S}_k(\mathbf{T}^r) \triangleq \hat{S}(\mathbf{T}^r) + \alpha_k.$
- **(3)** The corrected model is used to design \mathbf{T}_{k+1}^r for the next batch:

$$\mathbf{T}_{k+1}^{r} = \arg\min_{\mathbf{T}^{r} \in \mathbb{R}^{N}} \|\overline{\mathbf{S}}_{k+1} - \hat{S}_{k}(\mathbf{T}^{r})\|^{2} + \lambda \|\mathbf{T}^{r} - \mathbf{T}_{k}^{r}\|^{2}$$

A B < A B </p>

Outline

3 Simulation Results

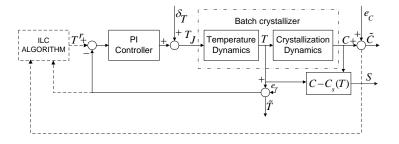
4 Conclusions

Marco Forgione (TU Delft)

- 4 同 ト - 4 三 ト - 4 三

Scenario

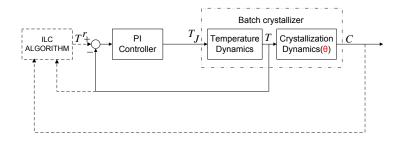
- Objective: tracking of a constant set-point $\overline{\mathbf{S}} = 2.5 \ \text{g/L}$
- N = 20 batches
- \mathbf{T}_k^r updated from batch to batch using ILC



Cases

Simulation study in four cases

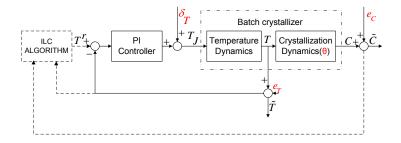
Case 1: No disturbances, parametric model mismatch



• = • •

Simulation study in four cases

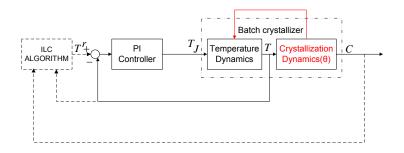
Case 2: Disturbances + parametric model mismatch



Cases

Simulation study in four cases

Case 3: No disturbances, structural model mismatch

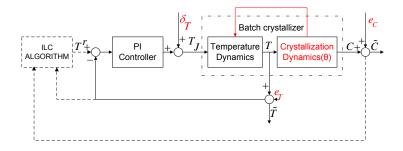


(3)

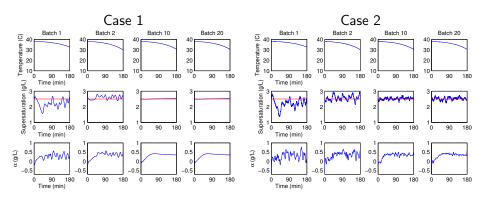
Cases

Simulation study in four cases

Case 4: Disturbances + structural model mismatch



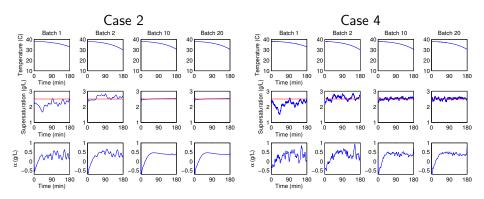
Cases 1 & 2



ACC 2012 16 / 21

- 4 ⊒ →

Cases 2 & 4



ACC 2012 17 / 21

< A

→

Outline

Batch Crystallization

- Iterative Learning Control
- **3** Simulation Results

< ロ > < 同 > < 三 > < 三

Conclusions

An Iterative Learning Control scheme for batch cooling crystallization.

- Can use measurements available at the end of a batch.
- Built on top of standard T control
- Can cope with model mismatches and disturbances.

Future/current work

- Practical implementation.
- Control more properties (growth rate, CSD).
- Improve the tuning of the algorithm.
- Comparison with parametric estimation.

Thank you. Questions?

イロト イ団ト イヨト イヨト