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Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

Requires domain knowledge and/or ad-hoc identification experiments

A trade-off emerges between accuracy and complexity

In this work:

We consider the model as a design parameter and tune it on
calibration experiments to optimize a user-defined performance index

We specialize this framework for a hierarchical MPC architecture
often encountered in industrial applications

Can be seen as an extension of Identification for Control
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Control architecture

We consider the Reference Governor architecture for system So

1 An inner controller K handles fast dynamics

2 An outer MPC takes care of constraints and performance specs

MPC requires a model M of the inner loop Mo . Existing approaches:

Build model S for So , design K ⇒ M = feedback(SK , I )

Direct identification of K targeting a reference model M (VRFT)

In our work, M and K are tuned simultaneously with a data-driven global
optimization approach.
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Control architecture
Inner Loop Controller

The inner controller K generates the system input u.
It is designed to handle fast dynamics

Stabilize inner loop M

Reject fast system disturbances

It is often as simple as a PID. . .

K (z , θ) = θP + θITs
1

z − 1
+ θD

Nd

1 + NdTs
1

z−1
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Control architecture
Model Predictive Controller

The outer MPC generates the reference g for the inner loop Mo using a
model M(θ) : g → [ yu ]

ξt+1 = AMξt + BMgt[
yt
ut

]
= CMξt + DMgt ,

to handle constraints and enhance performance, according to

min
{gt+k|t}Npk=1

Np∑
k=1

∥∥yt+k|t − rt+k

∥∥2

Qy
+
∥∥ut+k|k−ut+k−1|t

∥∥2

Q∆u

s.t. model equations, constraints on g , y , u, ∆u
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Performance-oriented tuning
Overview

To implement the performance-oriented tuning, we need to define

Tunable design parameters of the inner controller K and of the inner
loop model M collected in a design vector θ, with θ ∈ Θ.

An experimental procedure to perform calibration experiments
representative of the intended closed-loop operation

A closed-loop performance index J defined in terms of measured
input/outputs during the calibration experiment: J = J(y1:T , u1:T ; θ)

MPC calibration is seen as a global optimization problem:

θopt = arg min
θ∈Θ

J(y1:T , u1:T ; θ)

each (noisy) function evaluation correspond to a calibration experiment.

Problem is tackled using efficient global optimization algorithms.
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Bayesian Optimization
Overview

One of the best off-the-shelf global optimization algorithms

Iteratively updates a stochastic surrogate model of the unknown J(θ)
via Bayesian inference. Typically, a Gaussian Process (GP)

Balances exploitation and exploration by optimizing an acquisition
function A(θ) instead of the surrogate model directly

The acquisition function A(θ) favors points with estimated good
performance → exploitation and/or high variance → exploration

The acquisition function A(θ) is (relatively) cheap to evaluate. It is a
mathematical object!
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Bayesian Optimization
Gaussian Process

The function J(θ) assumed Gaussian with prior mean E [J(θ)] = µ(θ)
and covariance cov[J(θ1), J(θ2)] = κ(θ1, θ2).

The posterior mean and covariance given a new observation (θi , Ji ) is
obtained in closed form
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Bayesian Optimization
Acquisition function

The GP provides the probability distribution of J(θ) for each parameter θ.
This probability is used to define an acquisition function, e.g.,

Probability of Improvement

A(θ) = PI(θ) = p(J(θ) ≤ Jmin)

Expected Improvement

A(θ)=EI(θ)=E[max
(
0, Jmin−J(θ)

)
]
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Bayesian Optimization
Overview

Steps of BO: for i = 1, 2, . . . imax

1 Execute experiment with θi , measure Ji = J(θi ) + ei
2 Update the GP model θ → J(θ) with (θi , Ji )

3 Construct acquisition function A(θ)

4 Maximize A(θ) to obtain next query point θi+1

GP at iteration i
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Bayesian Optimization
Example

iteration 6

GP fit
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Bayesian Optimization
Example
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Bayesian Optimization
Example

iteration 8

GP fit
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Bayesian Optimization
Example

iteration 9

GP fit
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Bayesian Optimization
Example

iteration 20

GP fit
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Simulation Example
Cart-pole system

State x =[p ṗ φ φ̇]>

Output y =[p φ]> corrupted
by white measurement noise

Input u = F with fast additive
disturbance (10 rad/sec)

Control structure: inner PID
on φ, outer MPC as Reference
Governor

Objective: starting at p0 = 0, φ0 = 15o

1 stabilize pendulum in the upright
unstable equilibrium φ = 0

2 keep cart position p in [−1 1] m

J = log

[
1

T

T∑
t=1

(
1

10
|pt | +

9

10
|φt |

)]
+

T∑
t=1

`(|pt | − 1)

Design parameters: PID gains,
model M, prediction horizon Np

Calibration experiments of 10 s

TPID
s =5 ms, TMPC

s =50 ms
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Simulation Example

Performance index vs. iteration
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For increasing iteration i , more and more points have “low” cost

Optimal trajectory satisfies constraints p ∈ [−1 1] m

Achieved performance is better than our manual tuning
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Conclusions

An experiment-driven MPC calibration approach based on global
optimization

Predictive model explicitly tuned for the performance index

Applied to a hierarchical Reference Governor structure

Current/future works

Application to robotic systems with PID+feedback linearization

Tuning of MPC parameters such as cost-function weight matrices,
observer gains, sampling time, solver accuracy for embedded MPC

Analyze generalization properties with respect to objectives not
considered in the calibration phase

Find parametrized solution with respect to different reference
trajectories
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Thank you.
Questions?
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