Performance-oriented model learning for data-driven MPC design

Dario Piga¹, Marco Forgione¹, Simone Formentin², and Alberto Bemporad ³

¹IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI, Lugano, Switzerland

²Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

³IMT School for Advanced Studies Lucca, Lucca, Italy

58th IEEE Conference on Decision and Control Nice, France

CDC 2019 1 / 15

• • = • • = •

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

In this work:

- We consider the model as a design parameter and tune it on calibration experiments to optimize a user-defined performance index
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications
- Can be seen as an extension of Identification for Control

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

In this work:

- We consider the model as a design parameter and tune it on calibration experiments to optimize a user-defined performance index
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications
- Can be seen as an extension of Identification for Control

A B A A B A

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

In this work:

- We consider the model as a design parameter and tune it on calibration experiments to optimize a user-defined performance index
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications
- Can be seen as an extension of Identification for Control

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We consider the Reference Governor architecture for system S_o

• An inner controller *K* handles fast dynamics

② An outer MPC takes care of constraints and performance specs

MPC requires a model M of the inner loop M_o . Existing approaches:

- Build model S for S_o , design $K \Rightarrow M = \texttt{feedback}(SK, I)$
- Direct identification of K targeting a reference model M (VRFT)

In our work, M and K are tuned simultaneously with a data-driven global optimization approach.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We consider the Reference Governor architecture for system S_o

- An inner controller K handles fast dynamics
- ② An outer MPC takes care of constraints and performance specs

MPC requires a model M of the inner loop M_o . Existing approaches:

- Build model S for S_o , design $K \Rightarrow M = \texttt{feedback}(SK, I)$
- Direct identification of K targeting a reference model M (VRFT)

In our work, M and K are tuned simultaneously with a data-driven global optimization approach.

(B)

We consider the Reference Governor architecture for system S_o

- An inner controller K handles fast dynamics
- ② An outer MPC takes care of constraints and performance specs

MPC requires a model M of the inner loop M_o . Existing approaches:

- Build model S for S_o , design $K \Rightarrow M = \texttt{feedback}(SK, I)$
- Direct identification of K targeting a reference model M (VRFT)

In our work, M and K are tuned simultaneously with a data-driven global optimization approach.

Inner Loop Controller

The inner controller K generates the system input u. It is designed to handle fast dynamics

- Stabilize inner loop M
- Reject fast system disturbances

It is often as simple as a PID...

$$K(z,\theta) = \theta_P + \theta_I T_s \frac{1}{z-1} + \theta_D \frac{N_d}{1 + N_d T_s \frac{1}{z-1}}$$

Model Predictive Controller

The outer MPC generates the reference g for the inner loop M_o using a model $M(\theta): g \to \begin{bmatrix} y \\ y \end{bmatrix}$

$$\begin{aligned} \xi_{t+1} &= A_M \xi_t + B_M g_t \\ \begin{bmatrix} y_t \\ u_t \end{bmatrix} &= C_M \xi_t + D_M g_t, \end{aligned}$$

to handle constraints and enhance performance, according to

$$\min_{\{g_{t+k|t}\}_{k=1}^{N_{p}}} \sum_{k=1}^{N_{p}} \|y_{t+k|t} - r_{t+k}\|_{Q_{y}}^{2} + \|u_{t+k|k} - u_{t+k-1|t}\|_{Q_{\Delta u}}^{2}$$

Performance-oriented tuning

Overview

To implement the performance-oriented tuning, we need to define

- Tunable design parameters of the inner controller K and of the inner loop model M collected in a design vector θ, with θ ∈ Θ.
- An experimental procedure to perform calibration experiments representative of the intended closed-loop operation
- A closed-loop performance index J defined in terms of measured input/outputs during the calibration experiment: J = J(y_{1:τ}, u_{1:τ}; θ)

MPC calibration is seen as a global optimization problem:

$$\theta^{\text{opt}} = \underset{\theta \in \Theta}{\operatorname{arg min}} J(y_{1:T}, u_{1:T}; \theta)$$

each (noisy) function evaluation correspond to a calibration experiment.

Problem is tackled using efficient global optimization algorithms.

イロト 不得 トイヨト イヨト

Performance-oriented tuning

Overview

To implement the performance-oriented tuning, we need to define

- Tunable design parameters of the inner controller K and of the inner loop model M collected in a design vector θ, with θ ∈ Θ.
- An experimental procedure to perform calibration experiments representative of the intended closed-loop operation
- A closed-loop performance index J defined in terms of measured input/outputs during the calibration experiment: J = J(y_{1:τ}, u_{1:τ}; θ)

MPC calibration is seen as a global optimization problem:

$$\theta^{\text{opt}} = \operatorname*{arg\,min}_{\theta \in \Theta} J(y_{1:T}, u_{1:T}; \theta)$$

each (noisy) function evaluation correspond to a calibration experiment.

Problem is tackled using efficient global optimization algorithms.

Performance-oriented tuning

Overview

To implement the performance-oriented tuning, we need to define

- Tunable design parameters of the inner controller K and of the inner loop model M collected in a design vector θ, with θ ∈ Θ.
- An experimental procedure to perform calibration experiments representative of the intended closed-loop operation
- A closed-loop performance index J defined in terms of measured input/outputs during the calibration experiment: J = J(y_{1:τ}, u_{1:τ}; θ)

MPC calibration is seen as a global optimization problem:

$$\theta^{\text{opt}} = \operatorname*{arg\,min}_{\theta \in \Theta} J(y_{1:T}, u_{1:T}; \theta)$$

each (noisy) function evaluation correspond to a calibration experiment.

Problem is tackled using efficient global optimization algorithms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

One of the best off-the-shelf global optimization algorithms

- Iteratively updates a stochastic surrogate model of the unknown $J(\theta)$ via Bayesian inference. Typically, a Gaussian Process (GP)
- Balances exploitation and exploration by optimizing an acquisition function A(θ) instead of the surrogate model directly
- The acquisition function A(θ) favors points with estimated good performance → exploitation and/or high variance → exploration
- The acquisition function $A(\theta)$ is (relatively) cheap to evaluate. It is a mathematical object!

Gaussian Process

- The function J(θ) assumed Gaussian with prior mean E[J(θ)] = μ(θ) and covariance cov[J(θ₁), J(θ₂)] = κ(θ₁, θ₂).
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Gaussian Process

- The function J(θ) assumed Gaussian with prior mean E[J(θ)] = μ(θ) and covariance cov[J(θ₁), J(θ₂)] = κ(θ₁, θ₂).
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

(4) (日本)

Gaussian Process

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\operatorname{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

Gaussian Process

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\operatorname{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2).$
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

(4) (日本)

Gaussian Process

- The function J(θ) assumed Gaussian with prior mean E[J(θ)] = μ(θ) and covariance cov[J(θ₁), J(θ₂)] = κ(θ₁, θ₂).
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

(4) (日本)

Gaussian Process

- The function J(θ) assumed Gaussian with prior mean E[J(θ)] = μ(θ) and covariance cov[J(θ₁), J(θ₂)] = κ(θ₁, θ₂).
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

・ 何 ト ・ ヨ ト ・ ヨ ト

Acquisition function

The GP provides the probability distribution of $J(\theta)$ for each parameter θ . This probability is used to define an acquisition function, *e.g.*,

Probability of Improvement

Expected Improvement

 $A(\theta) = \operatorname{PI}(\theta) = p(J(\theta) \le J^{\min}) \qquad A(\theta) = \operatorname{EI}(\theta) = \mathbb{E}[\max\left(0, J^{\min} - J(\theta)\right)]$

(B)

Overview

Steps of BO: for $i = 1, 2, \dots i_{\max}$

- **Q** Execute experiment with θ_i , measure $J_i = J(\theta_i) + e_i$
- **2 Update** the GP model $\theta \to J(\theta)$ with (θ_i, J_i)
- **Sometry Construct** acquisition function $A(\theta)$
- **OMAXIMIZE** $A(\theta)$ to obtain next query point θ_{i+1}

iteration 6

(IDSIA)

▲ ■ ▶ ■ つへで CDC 2019 11/15

iteration 7

(IDSIA)

▲ ■ ▶ ■ つへで CDC 2019 11/15

iteration 8

(IDSIA)

▲ ■ ▶ ■ つへで CDC 2019 11/15

iteration 9

(IDSIA)

▲ ■ ▶ ■ つへで CDC 2019 11/15

iteration 20

(IDSIA)

▲ ■ ▶ ■ つへで CDC 2019 11/15

Simulation Example

Cart-pole system

- State $x = [p \dot{p} \phi \dot{\phi}]^{\top}$
- Output y = [p φ][⊤] corrupted by white measurement noise
- Input u = F with fast additive disturbance (10 rad/sec)
- Control structure: inner PID on φ, outer MPC as Reference Governor

Objective: starting at $p_0 = 0$, $\phi_0 = 15^o$

- stabilize pendulum in the upright unstable equilibrium $\phi = 0$
- 2 keep cart position p in $[-1 \ 1]$ m

$$J = \log\left[\frac{1}{T}\sum_{t=1}^{T}\left(\frac{1}{10}|p_t| + \frac{9}{10}|\phi_t|\right)\right] + \sum_{t=1}^{T}\ell(|p_t| - 1)$$

- Design parameters: PID gains, model *M*, prediction horizon *N*_p
- $\bullet\,$ Calibration experiments of 10 $\rm s$

•
$$T_s^{\text{PID}} = 5 \text{ ms}, T_s^{\text{MPC}} = 50 \text{ ms}$$

CDC 2019 12 / 15

Simulation Example

- For increasing iteration i, more and more points have "low" cost
- Optimal trajectory satisfies constraints $p \in [-1 \ 1] \ \mathrm{m}$
- Achieved performance is better than our manual tuning

∃ >

Conclusions

An experiment-driven MPC calibration approach based on global optimization

- Predictive model explicitly tuned for the performance index
- Applied to a hierarchical Reference Governor structure

Current/future works

- Application to robotic systems with PID+feedback linearization
- Tuning of MPC parameters such as cost-function weight matrices, observer gains, sampling time, solver accuracy for embedded MPC
- Analyze generalization properties with respect to objectives not considered in the calibration phase
- Find parametrized solution with respect to different reference trajectories

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conclusions

An experiment-driven MPC calibration approach based on global optimization

- Predictive model explicitly tuned for the performance index
- Applied to a hierarchical Reference Governor structure

Current/future works

- Application to robotic systems with PID+feedback linearization
- Tuning of MPC parameters such as cost-function weight matrices, observer gains, sampling time, solver accuracy for embedded MPC
- Analyze generalization properties with respect to objectives not considered in the calibration phase
- Find parametrized solution with respect to different reference trajectories

A B A A B A

Thank you. Questions?

A D N A B N A B N A B N