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Abstract— An experiment design procedure for the estima-
tion of the parameters of a dynamical system in a nonlinear
model structure is presented in this paper. The input to the
system is designed in such a way that the information content
of the data, as measured by a scalar function of the information
matrix is maximized. By restricting the input to a finite number
of possible levels, the experiment design is formulated as a
convex optimization problem which can be solved efficiently.
The method is applied to a model of a Continuous Stirred Tank
Reactor in a simulation study. The estimation based on the input
signal obtained in our procedure is shown to outperform the
one based on random binary signals.

I. INTRODUCTION

The general problem considered in the Experiment Design
(ED) field is to determine conditions such that the data
collected from the experiments, together with the prior in-
formation available, allow us to construct an accurate model
for the system.

In this paper, we restrict to the situation in which a
model structure which can represent the true system is
known (e.g. from first-principles knowledge), but the values
of the parameters determining the “right” model within
the structure are uncertain and need to be estimated. For
dynamical systems, the model structure is a set of (ordinary,
algebraic or partial) differential equation parametrized by the
unknown parameters.

The objective of the ED in this case is to guarantee that
accurate estimates for those parameters can be reconstructed
from the data. A measure of the accuracy can be built by
considering the so-called information matrix. A well-known
result is indeed that when a statistically efficient method such
as maximum likelihood is used for the parameter estimation,
the variance of the estimated parameters is asymptotically
equal to the inverse of the information matrix [21].

In the Systems Identification community, the ED task has
been extensively studied for model structures of dynamical

M. Forgione and X. Bombois are with the Delft Center for Systems and
Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands. [m.forgione@tudelft.nl].

P.M.J. Van Den Hof is with the Department of Electrical Engineering,
Eindhoven University of Technology, The Netherlands.
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systems which are linear in the input [8]. In this case, the
information matrix is an affine function of the spectrum
of the input signal. This property has been widely used
in the design of the excitation signal adopting a two-step
design procedure. Firstly, a spectrum for the excitation signal
which is optimal according to some criterion is determined.
Exploiting the affine relation between the information matrix
and the spectrum, the latter can often be found as the solution
of a convex optimization problem [11], [2]. Secondly, a
signal having the optimal spectrum is generated and given
as input to the system.

Conversely, performing ED for parameter estimation of
a dynamical system in a nonlinear model structure is still
an open and challenging research topic. Still, the objective
can be formulated in the terms of the information matrix
as in the linear case. However, the spectrum of the input
signal is not sufficient to characterize the information matrix
for nonlinear dynamical system. A possibility is to design
the entire probability density function of the input signal.
1 Since the probability density function appears linearly in
the information matrix, a similar two-step procedure could
be adopted. However, this procedure becomes much more
involved than the one based on the spectrum used for linear
dynamical system (see [10], [12], [20]).

An alternative approach is to optimize the input signal
directly in the time domain by solving a dynamic opti-
mization problem involving the information matrix [7]. This
approach has been followed for different applications such
as a cooling crystallization [4] and a semibatch RODTOX
process [18]. However, a drawback is that the dynamic
optimization problem in general very hard. Typically, it
is severly nonconvex and depends on a large number of
optimization variables representing a parametrization of the
input signal. When the optimization problem is solved using
standard gradient-based algorithms, chances are high that
the numerical solution will lie in the proximity of a local
optimum, which is possibly far away from the global one.
Convex relaxation for ED problems posed in the time domain
have only been developed for linear dynamical system (see
[14]).

In this paper, we present an ED procedure which can be
applied to a fairly large class of nonlinear model structures,
but still relies on convex optimization. This method can be
seen as a deterministic version of the approximate discrete
design [16], [6] extended to dynamical systems.

1Note that the spectrum (which is sufficient to characterize the informa-
tion matrix for linear dynamical system) only describes the second order
statistical properties of the input signal.



We restrict the range of the input signal to a finite number
finite number of possible levels and divide the time of the
experiment in a number N of consecutive intervals. During
each of the intervals, we keep the input signal constant
at one of the levels. This piecewise constant input signal
can be described by the sequence of N levels that are
encountered. We call this sequence the input sequence. In
the input sequence we can recognize N − m + 1 shorter
subsequences of length m. If the fading memory of the
system is smaller than m intervals, then the output of the
system during a certain interval j (and thus also the infor-
mation matrix) is determined by the subsequence that ends
in interval j. Therefore, the information matrix for the whole
experiment is proportional to the relative frequency at which
each subsequence occurs in the input sequence multiplied by
the information matrix relative to the input subsequences. In
other words, there is a linear relation between the information
matrix and the relative frequencies.

Owing to linearity, we will be able to formulate the ED
Problem optimizing a convex measure of the information ma-
trix using the frequencies as design variables. After solving
the problem, we generate an input sequence in which the
subsequences appear in numbers proportional to the relative
optimal frequencies.

Our approach is inspired by the probabilistic input design
first proposed in [12] for nonlinear FIR systems. In that
contribution, a convex measure of the expected value of
the information matrix is optimized over the probability of
the occurrence of the different subsequences. Compared to
[12], we adapt the framework in such a way that it can
be applied to the larger class of nonlinear fading memory
systems. Moreover, we here follow a deterministic procedure
for the generation of the input signal. For this reason, even
though the ED optimization problem solved in [12] and
the one solved here are formally equivalent, the probability
of the subsequence is here interpreted as the frequency of
occurrence in the input sequence.

Another similar ED method based on a multilevel input
signal has been recently derived in [5]. Interestingly, the ED
method in [5] was developed as a generalization of a previous
multisine ED method for linear systems described in [17].
The ED method is described in [5] for the particular case of
Wiener systems consisting of a linear FIR filter followed by
a static polynomial nonlinearity. Compared to [5] (beside the
more general framework allowing nonlinear fading memory
systems), we formulate the ED as a convex optimization
problem (as was also done in [12]) which can be solved
efficiently using standard software and algorithms without
introducing further approximations.

In the numerical example, we apply our method to a
nonlinear model from process engineering (i.e. an irreversible
CSTR reactor). We observe that the optimal input signal
for our problem drives the system in two distinct regimes.
This result is very interesting in relation to the classical ED
problem involving linear systems, where it is known that
the information matrix only depends on the spectrum of the
input and therefore the latter can be generally chosen as the

realization of an ergodic, quasi-stationary stochastic process.
It is clear that a description in terms of the spectrum is not
sufficient in order to characterize the optimal input signal in
our case.

II. THE FRAMEWORK

A. True system and model structure

We assume that a model structure which can describe the
true system is given in state-space ODE representation

ẋ(t) = f(x(t), u(t), θ)

y(t) = g(x(t), θ)
(1)

where x(t) is the state, u(t) is the input, y(t) is the output
and θ ∈ Rp is the uncertain model parameter. The initial
state x0 = x(0) is fixed and known. We consider here the
SIMO case, i.e. u(t), y(t) ∈ R and y(t) ∈ Rq and q ≥ 1. 2

We assume that there exists one (and only one) true
parameter θo such that the output of the model is equal to
the output of the true system for every possible input signal.

Measurements ỹk of the output y are collected at a
constant rate ts and are corrupted by an additive white
gaussian noise source ek having mean 0 and covariance Σe:
ỹk = y(kts) + ek with ek ∼ N (0,Σe). We assume that the
system has the fading memory property, in the sense defined
in [3]. Loosely speaking, this means that the output of the
system mostly depends on the values of the input in the
recent past, while the influence of the input in the remote
past gradually fades out.

B. Input signal

We restrict the range of the input signal u(t) to a finite
number of possible levels α = {α0, α1, . . . , α`−1}. The time
of the experiment is divided into a number of consecutive
intervals Ij , j = 0, 1, . . . , N − 1. Each interval has a fixed
duration tI which is a multiple of the sampling time ts:
tI = nts where n is a positive, integer number. The input
signal is kept constant to one of the possible levels in α
during each interval.

The input signal during the experiment can be de-
scribed by an input sequence of N levels S =
{u0, u1, . . . , uN−1}, uj ∈ α. Each element uj represents
the value of the input signal during the interval Ij . The output
of the system y(t) is a function of the input sequence S,
the initial condition x0 and the true parameter θo: y(t) =
y(t;S, x0, θ

o).
Since the system has fading memory, the output during a

certain interval Ij mostly depends on the input during the
previous m intervals Ij−m+1, Ij−m+2, . . . , Ij . For this rea-
son, we recognize in the input sequence S a number N−m+
1 of shorter subsequences sj = {uj−m+1, uj−m+2, . . . , uj}
having length m. Note that neighboring subsequences over-
lap on each other. In fact, two consecutive subsequences sj
and sj+1 share m− 1 elements (see Figure 1).

2The extension to the MIMO case is possible, but would add notational
complexity.
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Fig. 1. Two consecutive subsequences sj and sj+1 share m−1 elements.

The number m of elements in a subsequence is chosen
large enough to describe the transient of the system with
good accuracy. Thus, we can approximate the output of
the system during interval Ij as a function of input values
contained in the subsequence sj , neglecting the influence of
the input values outside sj and of the initial condition3, i.e.
y(t) ≈ y(t; sj , θ

o) for t ∈ Ij and j ≥ m− 1.
From a combinatiorial consideration, the total number of

possible subsequences is M = `m. For the implementation
of the ED Problem, it will be necessary to enumerate all the
possible subsequences. To this end, it is convenient to put the
set of the possible subsequences in a 1:1 relation with the set
of the integer numbers ranging from 0 to `m− 1. The relation
is defined as follows. Given a subsequence, we consider
its elements as the digits of an integer number written in
the base `. Conversely, given an integer number we derive
its representation in the base ` and build the subsequence
by appending the levels corresponding to the digits from
left to right. We shall denote as s[h] the subsequence
which corresponds to the integer number h according to this
criterion. For instance, the binary subsequence {α0, α1, α1}
corresponds to the number (011)2 = 3. Conversely, if we
deal with ternary subsequences the integer number 19 =
(201)3 corresponds to the subsequence {α2, α0, α1}.4

C. Information Matrix

The information matrix F for the whole experiment is 5

F =

N−1∑
j=0

Fj︷ ︸︸ ︷
n−1∑
i=0

ψ((jn+i)ts)Σ
−1
e ψ((jn+i)ts)

>. (2)

where ψ(t) = d
dθy(t;S, x0, θ)

∣∣
θ=θo

is the output parameter
sensitivity.

We see that the information matrix F is the sum over the
intervals of the information matrices Fj of the data contained
in the intervals Ij . Due to the fading memory property
of the system, the output of the system in the interval Ij
(mostly) depends on the input values during the most recent
m intervals. Therefore, Fj is a function of the subsequence
sj = {uj−m+1, . . . , uj} whose last element uj appears in
the input sequence S at the position j.6 Furthermore, the

3The approximation is not accurate for j < m − 1, since the influence
of the initial condition cannot be neglected for these intervals.

4The notation (abc)d here denotes the integer number having digits abc
written in the base d. We omit to write the base when it is the usual base
10, e.g. 19 = (19)10.

5Note that due to chose framework (i.e. additive white noise on the output
y) the information matrix F is a deterministic function of the input signal.

6We here assume that even the output parameter sensitivity ψ(t) has the
fading memory property.

information matrices Fl and Fm relative two the intervals l
and m are identical if the subsequences sl and sm are the
same.

For each of the possible subsequences, we define

p([h]) =
number of occurrences of s[h] in S

N −m+ 1
(3)

as its relative frequency in the input sequence S. 7 By group-
ing in (2) the identical terms and ignoring the contribution
from data in the first m−1 intervals, the information matrix
F can also be written as

F = (N −m+ 1)

M−1∑
h=0

p(s[h])F (s[h]) (4)

where F (s[h]) is the contribution to the information matrix
relative to the subsequence s[h].

In order to compute a term F (s[h]), we simply simulate
the nonlinear system (together with the parameter sensitiv-
ities ψ(t)) feeding as input a signal which corresponds to
s[h]. Following, we compute the information matrix F (s[h])
for the last interval of s[h] as

F (s[h]) =

mn−1∑
i=(m−1)n

ψ(its)Σ
−1
e ψ(its)

> (5)

Note that the time in the latter equation is relative to the start
of the subsequence s[h].

III. EXPERIMENT DESIGN

A. Relative frequencies as design variables

For a given input sequence S, it is probably more natural
to compute the information matrix using (2). Nonetheless,
(4) is useful for the design of the input sequence.

We see indeed that the information matrix F is a linear
function of the relative frequencies p(s[h]). Thus, it is
convenient to consider p(s[h]) as design parameters of the
input sequence. Owing to the linear relation, a large class of
ED problems can be posed as convex optimization problems
in the decision variables p(s[h]).

However, a number of constraints on the relative frequen-
cies have to be set in order to obtain a solution which can
actually be implemented:

1) The relative frequencies p(s[h]) need to be positive
numbers summing up to 1.

2) An exact discrete design [6] requires the relative fre-
quencies p(s[h]) to be rational numbers in the range
QN = { kN , k = 1, 2, . . . , N}.

3) The relative frequencies have to be chosen in such a
way that the subsequences can be placed in the input
sequence S as shown in Figure 1.

Addressing point 1) is immediate. It implies M linear
inequalities and one linear equality, which can be easily
implemented in a convex optimization problem.

7Note that we divide the number of occurrences of s[h] in S by N−m+1
and not by N because the first m− 1 elements of the sequence S do not
contain any full subsequence on length m.



On the contrary, addressing point 2) is not straightforward.
Restricting p(s[h]) to QN would lead to a hard combinatorial
optimization problem. In practice, it is possible to relax (i.e.
neglect) the constraint allowing p(s[h]) to be generic real
numbers. In the ED literature, this corresponds to the so-
called continuous design [6].

Point 3 is also delicate to address. We have seen that
two consecutive subsequences sj , sj+1 in the input sequence
S have m − 1 elements in common. Let ∗ denote any
level αh ∈ α. If the subsequence sj is in the form
{∗, u0, . . . , um−2}, the next subsequence sj+1 has to be
in the form {u0, u1, . . . , um−2, ∗}. Similarly, a subsequence
in the form {u0, u1, . . . , um−2, ∗} can only come after by
one the form {∗, u0, u1, . . . , um−2}. Clearly, this sets a
constraint on the number of subsequences which have these
two patterns in the input sequence.

A necessary condition for the existence of an input
sequence in which the subsequences appear in numbers
proportional to the frequencies p(s[h]) is that

`−1∑
h=0

p({αh, u0, u1, . . . , um−2}) =
`−1∑
h=0

p({u0, u1, . . . , um−2, αh})

(6)
for all the `m−1 possible of subsequences of length m−1
{u0, u1, . . . , un−2} , uj ∈ α. It is easy to show that the
condition (6) is necessary, but not sufficient for the existence
of an input sequence satisfying the ordering constraints.
For instance, for a binary sequence of length 2, the so-
lution p({α0, α0}) = p({α1, α1}) = 0.5, p({α1, α0}) =
p({α0, α1}) = 0 satisfies the constraints (6). However, it
is not possible to switch from the subsequence ({α0, α0})
to ({α1, α1}) without introducing at least one subsequence
{α0, α1}. 8

At the moment, we are not aware of the existence of a
general, convex condition which is necessary and sufficient
in order to satisfy the ordering constraints. Thus, we only
consider the necessary condition (6) in the ED and solve
the issues related to transitions similar to the one above by
including a (minimum) number of additional elements in the
input sequence.

Exploiting the correspondence between sequences and
natural numbers, the subsequence {u0, u1, . . . , um−2} corre-
sponds to the integer number (u0u1 . . . um−3um−2)`. Thus,
the set of constraints (6) can be written conveniently as

`−1∑
h=0

p(s[j+h`n−1])=

−̀1∑
h=0

p(s[`j+h]) for j = 0, 1, . . . `n−1−1. (7)

8The same issue is present in the approach presented in [5] where the
same condition (6) has been used. A similar issue occurs following the
probabilistic approach as in [12]. The condition (6) in the probabilistic
approach guarantees the existence of a stationary distribution for the input
sequence such that the subsequences have marginal probabilities p({·}).
However, the Markov Chain defining this stationary probability distribution
may not be irreducible. Therefore, it may not be possible to generate the
subsequences in numbers asymptotically proportional to p(s[h]) sampling
from a single realization in the Markov Chain (i.e. we may not be in the
condition of applying the ergodic theorem [15]). These issues were not
addressed in the contributions [12] and [5].

B. Experiment Design Problem
We here consider a D-optimal ED problem which aims to

maximize the determinant of the information matrix. 9

max
p(1),p(2),...,p(M)

log det

(
M−1∑
h=0

p(s[h])F (s[h])

)
subject to (8)

p(s[h]) ≥ 0 for h = 0, 1, . . . ,M − 1 (9)
M−1∑
h=0

p(s[h]) = 1 (10)

`−1∑
h=0

p(s[j + h`n−1]) =

`−1∑
h=0

p(s[`j + h]) for j = 0, 1, . . . `n−1−1

(11)

The logarithm of the determinant of the information matrix
(which is a concave function) is maximized (8) subject to
constraints that the relative frequencies are positive (9) and
sum up to 1 (10). The necessary ordering constraint (11) for
the subsequences is also included.

The overall optimization problem (8)-(11) is convex and
can be solved using standard software and algorithms. In this
work, we used the optimization modelling software CVX [9]
with the solver SDPT3 [19].

Remark 1: In order to solve the optimization problem (8)-
(11), we need to compute the terms F (s[h]). However, these
terms actually depend on the true parameters θo, which is in
general unknown. This situation is common for ED problems
and is known as the “chicken and the egg” issue. The most
common workaround is to replace the true parameter θo by
an initial estimate θ̂ in the ED problem.

Remark 2: Once the problem (8)-(11) is solved, an input
sequence containing the subsequences in numbers (approx-
imately) proportional to the optimal frequencies has to be
generated. The input generation problem for dynamical sys-
tems is more complicated than in the static case considered
in classical approximate discrete design due to the ordering
constraints that the subsequences have to satisfy. In the nu-
merical example, we will present an ad-hoc input generation
for optimal frequencies obtained in that particular case. The
development of a general algorithm for input generation
starting from the optimal frequencies is left for future work.

IV. NUMERICAL EXAMPLE

We consider a Continuous Stirred Tank Reactor system
with jacket cooling in which a first-order irreversible reaction
A→ B takes place. Details on this system can be found in
Chapter 3 of [13]. An ODE representation of the system is

ĊA =
F

VR
(CA0−CA)− CAk0e

− E
RT (12)

ṪR =
F

VR
(T0−TR)− λ

CA

ρcp
k0e

− E
RT − UAJ(TR−TJ)

VRρcp
(13)

ṪJ =
FJ

VJ
(Tcin − TJ) +

UAJ

VJρJcJ
(TR − TJ). (14)

where CA (kmol/m3) is the concentration of the reactant A
in the reactor, TR (K) is the temperature inside the reactor

9Other ED problems considering a convex measure of the information
matrix such as E-optimal, A-optimal and L-optimal [1] could be similarly
implemented.



and TJ (K) is the temperature of the cooling medium inside
the jackets. The input u = FJ (m3/s) is the flow of the
cooling medium inside the jackets, the output vector is y =
[CA TR]> and the state vector is x = [CA TR TJ ]>.

The symbols θ = [k0 E λ UAJ ]> represent the uncertain
parameters which are to be estimated. The other symbols
represent known, fixed coefficients.

Measurements ỹ = [C̃A T̃R]> of y = [CA TR]> are
taken each ts = 10 min. and are corrupted by additive
white gaussian noise terms having variance σ2

C = 0.052 and
σ2
T = 0.12 respectively: Σe = diag(σ2

C , σ
2
T ). The length

of one interval is tI = 5 hours, so one interval contains
n = 30 time samples. An input subsequence is formed by
m = 10 consecutive time intervals. A binary excitation signal
is considered: α = {α0, α1} where α0 = 0.6ū, α1 = 1.4ū
and ū = 11.26 · 10−3. Thus, we have M = 210 = 1024
possible input subsequences s[h], h = 0, 1, . . . , 1023. For all
the possible subsequences, the information matrix of the data
collected in last element of the subsequence is computed.

The ED Problem (8-11) is implemented and solved nu-
merically. In order to avoid the chicken and the egg issue,
the ED is here based on the true parameters θo. 10

Interestingly, out of the 1024 possible subsequencies s[h]
only 5 have a strictly positive optimal frequency p(s[h]):

p({α0, α0, α0, α0, α0, α0, α0, α0, α0, α0}) = 0.1

p({α0, α1, α1, α1, α0, α1, α1, α1, α0, α1}) = 0.225

p({α1, α0, α1, α1, α1, α0, α1, α1, α1, α0}) = 0.225

p({α1, α1, α0, α1, α1, α1, α0, α1, α1, α1}) = 0.225

p({α1, α1, α1, α0, α1, α1, α1, α0, α1, α1}) = 0.225

We rename these subsequences to A,B,C,D,E respectively
for notational convenience. It is easy to verify that the
subsequences can be concatenated in two separated cycles:
L1 = {B,E,D,C} and L2 = {A}. Furthermore, we see
that if we repeat the cycles L1 and L2 in a ratio 9:4, we
obtain an input sequence in which the subsequences appear
in a number proportional to the desired frequencies.

Therefore, we build an input sequence that contains ex-
actly 9 cycles of L1 followed by 4 cycle of L2. The
input sequence starts with a full subsequence B. Follow-
ing, the last elements of the subsequences E,D,C, i.e.
{α1, α1, α0}, are appended to the input sequence. In this
way, the subsequences E,D,C are concatenated to the input
sequence. The last elements of the subsequences B,E,D,C,
i.e. {α1, α1, α1, α0}, are appended to the input sequence 8
more times, forming 9 loops L1 in total. The input sequence
defined so far terminates with one element α0. Nine more
elements α0 are appended forming a full subsequence A,
which is also a full cycle L2. Three more elements α0 are
appended to the sequence, forming 4 cycles L2 in total. The
input signal uoed(t) corresponding to this signal is formed
by a square wave followed by a constant part at the value
α0 (Figure 2).

10Of course, this approach would not be feasible in practice since θo
is always unknown. Nonetheless, the performance that we obtain using θo
represents an upper bound to the performance that can be achieved adopting
a different approximation and is interesting to consider this situation in this
preliminary study.
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Fig. 2. Optimal input signal uoed(t)

In order to verify the effectiveness of the ED procedure,
we perform two Monte Carlo studies where the parameter
estimation is performed nmc = 100 times for different
realization of the measurement noise. The parameter esti-
mation is performed according to the maximum likelihood
criterion, which in this case is a weighted least squares
criterion using the weights 1

σ2
C
, 1
σ2
T

for the measurements
CA, TR respectively.

In the first Monte Carlo study (Case 1), the input signal
used is uoed(t) for all the iterations. In the second Monte
Carlo study (Case 2), the input urbsk (t) is a random binary
signal defined between the same values and having clock
period tI . In this case, the input urbs

k (t) is stochastic and the
realizations are different for all the Monte Carlo runs.

The sample-scaled determinant of the information matrices
1
NnI

oed
k and 1

NnI
rbs
k obtained for the different Monte Carlo

iterations in the two cases are reported in Figure 3. Note
that the information matrix in our case only depends on
the input and therefore Ioed

k = Ioed is the same for all the
realizations in Case 1, while Irbs

k depends on the particular
realization of the random binary signal urbsk (t). The scaled
determinant 1

Nn det Ioed is 2.2 · 1014, while the average
of the scaled determinants 1

nmc

∑nmc

k=1
1
Nn det Irbs

k over the
different Monte Carlo iterations is 1.2·1014. Thus, in average,
the optimal input is approximately 1.8 times more efficient
than the random binary signal.

Under asymptotic assumptions, the covariance matrix of
the estimated parameters equals the inverse of the informa-
tion matrix. Nonetheless, it is interesting to check how ac-
curate this relation is in practice. For this reason, the sample
covariance Σ̂oed = 1

nmc−1

∑nmc

k=1(θ̂oed
k −θ̄)(θ̂oed

k −θ̄)> where
θ̄ = 1

nmc

∑nmc

k=1 = θ̂oed
k is compared with the theoretical

covariance Σoed
theo , inv(Ioed). We find that

Σ̂
oed

=


7.2 · 10−2 9.5 · 10−3 7.5 · 10−4 −4.2 · 10−5

9.5e−3 1.3e−3 1.0e−4 −1.0e−5
7.5e−4 1.0e−4 9.1e−5 −4.5e−5
−4.2e−5 −1.0e−5 −4.5e−5 2.6e−5

 ,

Σ
oed
theo =


8.6 · 10−2 1.1 · 10−2 5.7 · 10−4 1.0 · 10−4

1.1 · 10−2 1.4 · 10−3 8.e · 10−4 1.0 · 10−5

5.7 · 10−4 8.0 · 10−5 7.3 · 10−5 −3.5 · 10−5

1.0 · 10−4 1.0 · 10−5 −3.5 · 10−5 2.0 · 10−5

 .

The matrices Σ̂oed and Σoed
theo are reasonably close to each

other, e.g. the relative difference ‖Σoed
theo−Σ̂oed‖F
‖Σoed‖F of their

Frobenius norm is 0.15.
Finally, a scatter plot for the first two coordinates of the
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Fig. 4. Scatter plot for the first two coordinates of θo, θ̂oedk and θ̂rbsk

nmc identified parameters for the two cases is reported in
Figure 4. The parameters θ̂oed

k identified in Case 1 are closer
to the true parameter than the parameters θ̂rbs

k identified in
Case 2, as expected.

V. CONCLUSIONS

We have presented an ED method which can be applied
to a wide class of nonlinear process model structures. The
signal generated through this method is shown to compare
favorably with random binary signals in a simulation case.

The promising results presented in this paper leave a num-
ber of open questions and space for future research. First, we
would like to develop a general algorithm for the generation
of the input sequence starting from the optimal frequencies.
In general, this could be rather complicated when several
cycles of subsequences are possible and when the transition
between the cycles requires appending additional elements
to the sequence. Tools from graph theory could be used to
tackle the problem, e.g. to identify all the possible cycles
between the subsequences.

Second, the complexity of our method is proportional to
the number of possible subsequences, which in turn is equal
to the number of levels raised to the power of the number of
elements per subsequence. Increasing the number of levels
allows one to switch between a larger number of input
values. Increasing the number of elements in a subsequence
allows one to switch more often between the input values.

Both choices increase the degrees of freedom in the design
and thus possibly lead to a more effective excitation signal.
However, given the limitations on the computational power
available a trade-off between considering more levels or more
elements per subsequence has to be found.

Finally, in the numerical example we have observed that
out of the many possible subsequences, only a few of
them have a strictly positive optimal frequency, and they
correspond to two different regimes for the system. We have
obtained similar results for other nonlinear ED problems and
we would like to investigate the reasons that lead to this.
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