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Abstract— Two batch-to-batch (B2B) algorithms for super-
saturation control in cooling crystallization are presented in
this paper. In Iterative Learning Control (ILC) a nominal
process model is adjusted with an additive correction term
which depends on the error in the last batch. In Iterative
Identification Control (IIC) the physical parameters of the
process model are recursively estimated by adopting a Bayesian
identification framework. Both B2B algorithms compute an
optimized input for the next batch that is fed to a lower level PI
feedback controller in order to reject the process disturbances.
The tracking performance of these B2B+PI control schemes is
investigated in a simulation study.

I. INTRODUCTION

Batch crystallization is a separation process extensively
utilized in the pharmaceutical, food and fine chemical sectors
for the production of high value-added specialty chemicals.
The most common way to operate industrial batch cooling
crystallizers is to control the temperature inside the crystal-
lizer in order to follow a desired profile during the batch.
This strategy is known as T-control in literature [3]. Since
accurate on-line temperature measurements can readily be
obtained, the temperature is usually controlled in a closed-
loop setting. In this configuration, the desired temperature is
given as reference to a feedback loop.

However, even when the temperature is effectively con-
trolled, the final product of a batch might not show the
expected characteristics. The temperature is an important
process variable, but it is not the one most closely related
to the crystallization dynamics. The variable having the
most direct influence on the physico-chemical phenomena
occurring in crystallization is the supersaturation. This last
quantiy is often defined in terms of the solute concentration.

Feedback control strategies for supersaturation tracking
have been widely investigated [6], [7]. They are known as
C-control strategies in literature [3]. In general, C-control
was shown to give better performance compared to T-
control, particularly in terms of reproducibility of the final
product. A condition for the implementation of feedback C-
control is that accurate and reliable on-line concentration
measurements are available. However, in some cases the
measurements are obtained from off-line analysis of samples
collected throughout the batch. In other cases, the measure-
ment collected on-line are not considered reliable enough
for on-line control, especially in an industrial environment.
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In such situations feedback C-control is not feasible, but
we can still achieve supersaturation tracking by using the
information batchwise.

In this paper, we present a Batch-to-Batch (B2B) control
strategy to track efficiently a supersaturation profile under the
presence of unknown disturbances and model uncertainties.
Based on the desired supersaturation profile and the off-line
concentration measurements from the previous batches, a
B2B algorithm computes after each batch an improved ref-
erence profile T r for the temperature in the crystallizer. This
profile is set as reference for the lower level PI temperature
controller in the next batch.

Two B2B algorithms, namely an Iterative Learning Con-
trol (ILC) and an Iterative Identification Control (IIC) are
presented and compared. The ILC algorithm has already
been introduced in [2]. In this paper, the tuning of ILC is
made easier by posing its derivation in a stochastic settings
inspired from [1]. The IIC algorithm is based on System
Identification theory and is the main contribution of this
paper. Both algorithms update a model estimate after each
batch based on the newest temperature and concentration
measurements. Subsequently, they compute the input for the
next batch by solving an optimization problem based on the
most recent model estimate in order to track the desired
supersaturation reference.

However, the nature of the model update is different
in the two cases. In ILC the nominal process model is
adjusted with an additive correction term which depends on
the model error in the last iteration. On the contraty, in IIC
the physical parameters of the process model are recursively
estimated adopting a probabilistic Bayesian framework in
such a way that the estimate is improved from batch to
batch. Advantages and disadvantages of the two methods are
investigated in a simulation study.

II. MODEL OF BATCH COOLING CRYSTALLIZATION

The dynamics of a crystallization process is usually de-
scribed using a Population Balance Equation (PBE), along
with conservation balance equations and kinetic relations [9].
The PBE is a partial differential equation which describes the
time evolution of the Crystal Size Distribution (CSD), i.e.
the distribution of the number of crystals in the size domain.
The overall model is composed of the PBE and a set of
differential, possibly algebraic differential equations.

Under certain assumptions on the kinetic phenomena, a
model reduction technique known as moment model reduc-
tion can be applied [9]. This reduction leads to a set of
ordinary differential equations known as moment equations.
The process model used in this paper is based on moment



equations and its derivation is explained in details in [2].
Due to space limitation, here we only report a state-space
representation of this model in the form

ẋ = F(x(t)) + G(TJ(t))

y = H(x(t))

S =M(x(t)).

(1)

The states x = (m0 m1 m2 m3 T )> are the first four
moments of the CSD and the crystallizer temperature, the
input is the jacket temperature TJ , the measured output
y = (T C)> are the crystallizer temperature and the solute
concentration, the control output S is the supersaturation.
The state and the output mappings are given by

F(x)=


kb
(
C0−10−3ρckv(m3−m3,0)−Cs

(
T
))b

m3

kg
(
C0−10−3ρckv(m3−m3,0)−Cs

(
T
))g

m0

2kg
(
C0−10−3ρckv(m3−m3,0)−Cs

(
T
))g

m1

3kg
(
C0−10−3ρckv(m3−m3,0)−Cs

(
T
))g

m2

− UA
ρcpV

T



G(TJ) =


0
0
0

UA
ρcpV

TJ

H =

(
T

C0 − 10−3ρckv
(
m3−m3,0

))

M = C0−10−3ρckv(m3−m3,0)− Cs(T )
(2)

where Cs(T ) is a static mapping representing the solubility.
Note that the control output S can be computed from the
measured outputs y using the static relation

S = C − Cs(T ). (3)

The kinetic parameters θ =
[
kb b kg g

]>
in the state

equation may not be known with great accuracy in practice.
We assume a nominal value θ̂ is available a priori. However,
the actual parameters θ0 used in the simulation model will
differ from θ̂ in order to take the effect of parametric
model mismatches into account. On the contrary, the other
coefficients appearing in the model equaitons are assumed
to be known exactly. The value of these coefficients, the
nominal value of the parameters θ̂ and the initial condition
of the model can be found in [2]. It is worthwile noting that
the process dynamics is split into a part from TJ to T that is
perfectly known and a part from T to C that depends on the
uncertain parameters θ (Figure 1, Batch Crystallizer block).

It will be convenient to consider the system in a fi-
nite discrete-time representation. By applying an integration
method with fixed step td = 5 sec for a given initial con-
dition the input/output relation from TJ to S is represented
by the static mapping S = FSTJ (TJ, θ). In the following,
we shall adopt the bold-face notation for vectors of sampled
variables ∈ RN , where N is the batch length. The notation
FWV (·) will be used for the mapping from an input vector
V to an output vector W.

Measurements C̃ and T̃ of C and T are collected at the
same rate ts = td and corrupted by additive measurement
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Fig. 1. The overall B2B+PI control scheme

noise sequences eC and eT , respectively. eC and eT are mod-
eled as realizations of independent white gaussian variables
with standard deviation σT = 0.1 oC and σC = 2 g/L.

The jacket temperature TJ is perturbed by an additive
low-frequency disturbance δT , which is modeled as an
autoregressive process of order 1 with standard deviation
σAR = 0.25 oC:

δT (t+ 1) = aδT (t) + e(t) (4)

where a = 0.9895 and e(t) is white noise with standard
deviation σe = σAR

√
1− a2.

The realizations eC , eT and δT are different for each batch.

III. BATCH-TO-BATCH SUPERSATURATION CONTROL

In this section we present the B2B strategies ILC and IIC.
Both strategies are based on the same B2B+PI configuration
that is presented in the first subsection. Subsequently, the role
of the B2B controller is discussed, followed by a detailed
description of the two algorithms.

A. B2B+PI Configuration

Due to the presence of disturbances on the temperature
dynamics, we include into the control scheme a PI controller
for the crystallizer temperature T . The B2B algorithm drives
the set-point of the PI controller T r instead of the jacket
temperature TJ directly. The overall B2B+PI control scheme
is sketched in Figure 1. The two leftmost blocks represent
the control system: the PI temperature controller and the
B2B controller, which drives the reference of the latter.
The signals coming and departing from the B2B block are
updated off-line only, i.e. from one batch to the other and
are indicated by dashed lines. All other signals represented
by continuous lines are updated during the same batch.

The PI controller is determined by the transfer function
C(s) = KP + KI

s where KP = (ρcpV )/(tclUA) and KI =
1/tcl with tcl = 2 min. A discrete time version of this PI
controller is implemented in the simulation model.

B. Batch-to-Batch Control

After each batch, the corrupted measurements outputs
ỹ = (T̃, C̃)> are available. The corrupted control output
S̃ can be estimated from ỹ according to Equation (3). The
role of the B2B controller is to design after each batch
k an improved input Tr

k+1 in order to track a reference
Sk+1 in the batch k + 1. The design can be based on
all the information collected up to batch k, that is given



by the data collected from the previous batches and the a
priori information about the system. In our case the a priori
information consists of an assumed model structure S =
FST r (T

r, θ), the nominal parameter θ̂ and the statistical
properties of the disturbances acting on the system.

In general, real dynamics from T r to S will differ from
the nominal model F̂ST r (Tr) , FST r (T

r, θ̂) since θ̂ 6= θ0

(parametric model mismatch). Furthermore, real dynamics
might even not be exactly described by any parameter θ in
the case of a structural model mismatches.

C. Iterative Learning Control

Different B2B control algorithms are chategorized as ILC
in literature. In general, they are mappings defining the
input in the next batch based on the nominal model and
the previous input-output data.

The ILC algorithm we presented in [2] was based on an
additive model correction. We defined the updated model at
batch k as

S = F̂ST r (T
r) + αk (5)

where αk is the so-called correction vector. The correction
vector was estimated based on the measurement of the
previous batch as

αk = arg min
α∈RN

‖S̃k− (F̂ST r (T
r
k)+α)‖2 +Sα‖α−αk−1‖2

(6)
where Sα is a tuning parameter. However, the tuning of Sα
was not intuitive and required intensive trial-and-error.

In this paper we introduce a novel framework in order to
estimate the correction vector based on a stochastic setting
inspired from [1]. This framework is intended to make the
tuning of the algorithm easier and more efficient. The true
system is assumed to satisfy the following stochastic model

αk = αk−1 + ∆αk, ∆αk ∼ N (0,Σαk)

S̃k = F̂ST r (T
r
k) + αk + vk, vk ∼ N (0,Σvk)

(7)

with α0 ∼ N (0,Σα0).
The value αk|k can be estimated from the measurement

S̃k using the Kalman filter on the previous model. The
correction vector αk models the deviation of the nominal
output that will occur again at iteration k + 1 modified by
up to an innovation term ∆αk. This deviation might be due
to the bias of the nominal model along a particular system
trajectory, as well as due to repetitive disturbances acting on
the system. On the contrary, the vector vk models output
deviations that will not be repeated at the next iteration.
The latter might be due to measurement noise as well as
due to the effect of nonrepetitive disturbances. A large Σαk
will force αk to adapt fast to S̃k − F̂ST r (Tr

k) while a large
Σvk would make the adaptation slow since S̃k would be
considered less reliable. Furthermore, the expected frequency
content of ∆αk and vk can be modeled in this framework
leading to a more efficient filtering.

Given a linear filter H(q), let us define QNH ∈ RN×N as
the Toeplitz matrix with entries QNH(i, j) = R(i− j)/R(0)
where R(τ) is the autocorrelation of a stochastic process

w(t) = H(q)e(t) and e(t) is white noise. QNH is the covari-
ance matrix of a vector w of random variables extracted from
the stochastic process w(t) and normalized to have unitary
variance. We can thus specify Σαk and Σvk in terms of linear
filters describing the frequency content of the corresponding
signals using the operator Q.

Compared to [1], the stochastic model is used to describe
the evolution of the correction vector αk instead of the
tracking error. Our formulation is therefore more flexible for
the situations in which the set-point is allowed to change
from one batch to another. Furthermore, a general nonlinear
process dynamics is assumed instead of a linear one.

The covariance matrix Σαk is set to a2
kQNB where B(q)

is a fourth order Butterworth filter with cutoff frequency
1/tf , tf = 5 minutes and ak is an iteration-dependent
scalar. The cutoff frequency was chosen by examining the
usual frequency content of the correction vector during noise-
free simulations. The iteration-dependent ak is a free tuning
parameter and represents the expected amplitude of the varia-
tion of the correction vector at iteration k. αk can be lowered
after some iterations in order to increase the filtering effect
on the estimate of the correction vector. However, after a set-
point change the value should be increased again in order to
let the correction vector adapt to the new configuration.

Σvk is set to σ2
CQN1 = σ2

CI
N where IN is the identity

matrix in order to model the measurement noise on C̃ used to
estimate S̃. The measurement noise on T̃ and the nonlinear
effect of the disturbances δT and eT on C̃ are ignored in
this setting.

Based on the previous considerations, this algorithm has
been devised. At each batch k, these steps are executed:

1) The temperature reference Tr
k is set as the input to

the temperature controller and the noisy measurements
C̃k, T̃k are collected.

2) S̃k is computed as C̃k − Cs(T̃k).
3) A corrected model of the dynamics from T r to S is

found as S = Ŝk(Tr) = FST r (T
r; θ̂) + αk|k. The

correction vector αk|k is estimated using the Kalman
filter on the stochastic model
αk = αk−1+∆αk, ∆αk ∼ N (0, a2

kQNB )

S̃k = F̂ST r (T
r)+αk+eC , eC ∼ N (0, σ2

CI
N )

(8)

where ak is a free iteration-depent parameter.
4) The corrected model is used to compute the tempera-

ture profile for the next iteration

Tr
k+1 = arg min

Tr∈RN
‖Sk+1 − Ŝk(Tr)‖2 (9)

where Sk+1 is the supersaturaton set-point for the
batch k + 1.

The dynamic optimization problem (9) is solved numeri-
cally using the active-set method of the Matlab function
fmincon. The optimization is based on a single shooting
strategy that is discussed in details in [2].

D. Iterative Identification Control
ILC algorithms are generally based on a nominal model,

but not directly on the knowledge of a full model structure



parametrized in θ. Intuitively, the explicit use of this infor-
mation may lead to a more efficient B2B learning algorithm.

The Bayesian framework suggests a recursive approach in
order to update the model parameters based on the estimates
from the previous batch and the data ỹk measured in the
current batch. After a batch k, the a posteriori probability
distribution pθ|k(θ|k) of the model parameters can be com-
puted according to Bayes rules using the previous parameter
distribution pθ|k−1(θ|k−1) and the likelihood pỹk|θ(ỹk|θ) of
the measured output ỹk from the last batch

pθ|k(θ|k) =
pỹk|θ(ỹk|θ)pθ|k−1(θ|k−1)∫
pỹk|k(ỹk|k)pθ|k−1(θ|k−1) dθ

. (10)

The parameter estimates actually used to describe the system
at iteration k could be chosen adopting different criteria, for
instance the Maximum over θ of the A Posteriori distribution
(MAP estimate). However, this estimation problem is in
general complex and does not admit a close-form solution.

An analytically tractable case is given when the obser-
vation ỹk is a vector of Gaussian variables with known
covariance and mean value parametrized by θ, and the
previous parameter distribution is also Gaussian i.e. ỹk ∼
N (m(θ0),Σe) and pθ|k−1(θ|k− 1) = N (θ̂k−1,Σθk−1

). In
this case, the MAP estimate is given by

θ̂k = arg min
θ
‖ỹk −m(θ)‖2

Σ−1
e

+ ‖θ − θ̂k−1‖2
Σ−1
θk−1

. (11)

Furthermore, pθ|k(θ|k) is often approximated as a gaussian
variable with mean θ̂k and variance

Σθk =

Σ−1
θk−1

+

Iθk︷ ︸︸ ︷
∂m(θ)

∂θ

>
Σe
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∂θ

∣∣∣∣
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−1

(12)

were Iθk is an approximation of the information matrix
related to the experiment k.

In our case, the observations ỹk are the vectors T̃k, C̃k.
We have already noted that in our model only the dynamics
FCT (T, θ) from T to C depends on the unknown parameter
θ. Furthermore, the measurement C̃k is the sum of Ck

and the white measurement noise eCk, whose statistical
properties are known. Therefore, we could apply Equations
(11) and (12) in this framework if we knew the temperature
Tk using m(θ) = FCT (Tk, θ) and ỹk = C̃k. However, the
corrupted signal T̃k is available in our case leading to an
Errors-In-Variables identification problem [10]. In this work
we ignore the effect or the measurement error eTk on the
temperature, since its variance is relatively small. In order
to further reduce the influence of the measurement error,
the high frequency components of this signal are removed
from T̃k through low-pass filtering and a sequence T̃k,f is
obtained. The actual temperature Tk is indeed not likely to
contain high frequency components.

This suggests the use of Equations (11) and (12) for
parameters update with m(θ) = FCT (T̃k,f , θ) and Σe =
σ2
CI

N where T̃k,f is a filtered version of the vector T̃k.

Based on the previous considerations, this algorithm has
been devised. At each batch k, these steps are executed:

1) The temperature reference Tr
k is set as the input to

the temperature controller and the noisy measurements
C̃k, T̃k are collected.

2) The vector T̃k,f is obtained by filtering T̃ through the
same filter B(q) defined in the ILC algorithm.

3) A corrected model of the dynamics from T r to S is
found as S = Ŝk(Tr) = FST r (T

r, θ̂k). The updated
parameter θ̂k is computed as

θ̂k = arg min
θ∈R4

(
‖C̃k − FCT (T̃k,f , θ̂

k)‖2
Σ−1
e

+

+ ‖θ − θ̂k−1‖2
Σ−1
θk−1

) (13)

where Σe = σ2
CI

N and Σ−1
θk

= Σ−1
θk−1

+ Iθk . Iθk is an
approximation of the information matrix computed as

Iθk =
∂FCT (T̃k,f , θ)

∂θ

>

Σ−1
e

∂FCT (T̃k,f , θ)

∂θ

∣∣∣∣∣
θ=θk−1

.

(14)
and Σ−1

θ0
is set to 0 for simplicity.

4) The corrected model is used to compute the tempera-
ture profile for the next iteration

Tr
k+1 = arg min

Tr∈RN
‖Sk+1 − Ŝk(Tr)‖2. (15)

The optimization problems (13) and (15) are solved numer-
ically using the active-set method of the Matlab function
fmincon. The same single shooting strategy as in the
case of problem (9) is used for problem (15). For problem
(13), derivatives of the objective function with respect to
model parameters are computed analytically by integrating
the sensitivity equations along with the model equations [8].

Note that the parameter estimation is performed during the
controlled batch experiments. The effect of the disturbance
δT on T provides excitation to the system along the trajectory
that is followed in the controlled experiments. The input
might not be informative enough to estimate all model pa-
rameters very accurately. However, the parts of the dynamics
having the strongest influence on the control objective are
naturally emphatized in such datasets. As a consequence,
performing the estimation based on those datasets tends to
provide good models for the particular control application.
Analogous situations have been analyzed in the field of
Identification for Control for the estimation of linear transfer
function. It was shown that if the final use of the model is
the design of a closed-loop controller, performing the same
estimation on closed-loop data is significantly advantageous.
These observations leaded to the concept of iterative design,
where successive steps of closed-loop identification and
model-based controller design are performed [4].

IV. SIMULATION RESULTS

In this section we evaluate the performance of the B2B
scheme described in the previous section on two different
test cases, namely in presence of parametric model mismatch
only (Case 1) and in presence of both parametric and
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Fig. 3. Case 1 IIC: Batches 1,10,11,30

structural mismatches (Case 2). The batch time is tf =
150 min and the total number of batches is Nb = 30. The
supersaturation set-point is the constant value Sk = 2.5 g/L
for the first 10 batches and is changed from batch 11
to 30 to a parabola passing through the points (t, S) =
{(0, 2.5), (100, 1.2), (150, 5)} (min, g/L).

The temperature reference at the first iteration Tr
1 is set

to a linear cooling from 38 to 10 oC in the time of the
batch. The corresponding supersaturation is far away from
the set-point throughout the batch (Figure 3, Batch 1).

For the ILC algorithm, the tuning of the scalar ak is done
as follows: ak = ak + c with c = 0.1, a0 = 2 and ak+1 = 2
if a set-point change occurs at iteration k+ 1, ak+1 = 0.7ak
otherwise.

Case 1

In this simulation the performance of the algorithms
in presence of parametric model mismatch is evaluated.
The true parameters used in the simulation model are
θ0 = [12 1.4 4 1]>, while the nominal value θ̂ =
[10.57 1.7 5 1.1]> is used by the B2B algorithms.

Results for the simulation are shown in Figure 2 for ILC
and Figure 3 for IIC. In Batch 2 the tracking error is already
small for IIC, while it is still appreciable for ILC. After some
iterations also ILC approaches the set-point more closely
(Batch 10). The performance is sensibly degraded in Batch
11 for ILC due to the set-point change, and is recovered
again in the following iterations (Batch 30). Note also that
the vector α is smoothened during the iterations owing to
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Fig. 5. Case 2 IIC: Batches 2,10,11,30

the Kalman filtering. In the IIC case, the set-point change
does not lead to any performance loss in Batch 11.

Case 2

On top of the parametric mismatch already considered
in Case 1, a structural model mismatch is introduced. A
temperature-dependent crystal growth mechanism is assumed
in the true system. The state equations 2,3,4 of F(x) in (2)
are multipled by a term A0 exp(−Ea/R(T + 273.15)), with
A0 = 1.3 × 107, Ea = 4.2 × 104 and R = 8.3144. This
kind of temperature dependence is known as Arrhenius-type
in literature [5].

The results of this simulation are reported in Figure 4 for
ILC and Figure 5 for IIC. The IIC algorithm leads to a poor
tracking performance in the first 10 batches (Batch 1, 10).
In Batch 11 a better result is achieved. The cause of the
better result is that the tracking of the new set-point requires
a lower temperature variation compared to the previous case.
Therefore, the mismatch of the nominal model that does
not incorporate the temperature-varying growth behavior is
less detrimental in these conditions. Note that this better
result is not caused by a learning mechanism. Indeed, no
further improvement is obtained in the following batches
(Batch 30). On the contrary the ILC algorithm is still capable
to approach the set-point, even though more iteration are
required (Batches 10, 30).

Note that the correction vector in ILC is again much
smoothened in Batch 30. However, a different correction
is performed. Compared to Case 1, α is more negative
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at the beginning of the process and increases towards the
end. This is reasonable from a physical point of view.
At the beginning of the process, at high temperature, the
temperature-dependent simulation model predicts a higher
growth rate of crystals, thus also a higher supersaturation
consumption. The nominal model, which does not incorpo-
rate this mechanism, has to be corrected to predict a lower
supersaturation compared to the previous case. Towards the
end of the process, at low temperature, the converse situation
occurrs and the nominal model has to be corrected in order
to predict higher supersaturation.

Overall Results and Discussion

The Root Mean Square Error (RMSE) of the supersatu-
ration tracking error is plotted against the iteration number
for all cases in Figure 6. The different behavior of the two
algorithms is evident in this plot. IIC provides the best
performance when the right model structure is assumed.
A good result is already obtained after the first iteration
of the algorithm and it is not considerably influenced by
the set-point change, because the algorithm learns the full
model structure (Case 1 IIC). However, the behavior of
the algorithm is hard to predict in the case of structural
model mismatches. The IIC framework indeed relies strongly
on the assumption of the model structure. In the situation
considered where a temperature-dependent growth behavior
is incorporated in the simulation model, IIC leads to a worse
overall performance compared to ILC. Furthermore, almost
no improvements are obtained after some batches (Case
2 IIC). The performance seems to improve in Batch 11,
but this is actually the effect of the set-point change. On
the contrary, ILC is much more robust to model structure
mismatches. Even though these mismatches make the con-
vergence somewhat slower in Case 2, a satisfactory result
is obtained after some batches. However, after a set-point
change more iterations are needed in order to come close to
the optimum again since the additive correction is a valid
approximation of the real dynamics only locally around a
particular trajectory.

The complexity of the two solutions has to be considered

both in terms of the computational effort required and in
terms of the ease of design. The design of the parameter up-
date in IIC is rather straightforward by adopting the Bayesian
approach. However, such estimation requires the solution of
a nonlinear least-squares problem. On the other hand, the
parameter update of ILC only requires matrix operations in
order to compute the additive correction update. However,
the tuning of the algorithm is more delicate and may still
require some trial-and-error. The stochastic framework we
introduced allows to make this procedure more transparent
and through the single parameter ak it is possible to vary the
adaptation speed of the algorithm.

V. CONCLUSION

We have presented a batch-to-batch (B2B) solution for
supersaturation control in batch cooling crystallization. The
B2B controller drives the reference of the PI temperature
controller in the so-called B2B+PI configuration. Two B2B
algorithms are evalued in this paper, namely an Iterative
Learning Control (ILC) and an Iterative Identification Con-
trol (IIC). The properties of the controlled system with
the two solutions have been discussed and analyzed in a
simulation study.

The algorithms are shown to have complementary advan-
tages and disadvantages. For this reason, it would be useful
to design a supervisory algorithm which could switch from
one strategy to the other based on the results in the previous
batches. As a second point the tuning of ILC, which has
already been simplified in this paper, should be made more
rigorous in future. As a final point the IIC algorithms needs
to be adapted for the case in which slow batch-to-batch
parameter variations are possible.
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